A calculus problem by Rocco Dalto

Calculus Level 5

Let a , b > 0 , a,b > 0, and 2 a 2 b 2 > 0. 2 a^2 - b^2 > 0.

d x d t = a 2 x + a 2 y b 2 x ( x 2 y 2 ) d y d t = a 2 x + a 2 y b 2 ( x 2 y 2 ) \frac{dx}{dt} = a^2 x +a^2 y - b^2 x ( x^2 - y^2) \\ \frac{dy}{dt} = -a^2 x + a^2 y -b^2 (x^2 - y^2)

The nonlinear system above has the solution x = x ( t ) x = x(t) , y = y ( t ) y = y(t) , where x ( t = 0 ) = y ( t = 0 ) = 1 2 . x(t = 0) = y(t = 0) = \dfrac{1}{2}.

If 1 a 2 ( ln ( 2 a 2 b b ) ) 1 a 2 ( ln ( 3 ( 2 a 2 b ) b ) ) x ( t ) 2 + y ( t ) 2 d t \displaystyle \int_{ \frac{1}{a^2} (\ln(\frac{\sqrt{2 a^2 - b}}{b})) }^{\frac{1}{a^2} (\ln(\frac{\sqrt{3(2 a^2 - b)}}{b}))} \sqrt{x(t)^2 + y(t)^2} \: dt can be expressed as
1 a 2 b ln ( α + β α + λ ) \dfrac{1}{a^2 * b} \ln \left(\frac{\alpha + \sqrt{\beta}}{\sqrt{\alpha} + \lambda}\right) , where α \alpha , β \beta , and λ \lambda are coprime positive integers.

Find: α + β + λ \alpha + \beta + \lambda .

Refer to previous problem. . .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 7, 2016

d x d t = a 2 x + a 2 y b 2 x ( x 2 y 2 ) d y d t = a 2 x + a 2 y b 2 ( x 2 y 2 ) \frac{dx}{dt} = a^2 x +a^2 y - b^2 x ( x^2 - y^2) \\ \frac{dy}{dt} = -a^2 x + a^2 y -b^2 (x^2 - y^2)

Converting to polar coordinates, let x = r c o s θ , y = r s i n θ x = r cos\theta, y = r sin\theta ( 1 ) : x 2 + y 2 = r 2 , ( 2 ) : θ = arctan ( y x ) (1): \: x^2 + y^2 = r^2, (2): \: \theta = \arctan(\dfrac{y}{x})

Taking the derivatives with respect to t t of ( 1 ) (1) and ( 2 ) (2) we obtain:

r d r d t = x d x d t + y d y d t r \dfrac{dr}{dt} = x \dfrac{dx}{dt} + y \dfrac{dy}{dt}

r 2 d θ d t = x d y d t y d x d t r^2 \dfrac{d\theta}{dt} = x \dfrac{dy}{dt} - y \dfrac{dx}{dt}

x ( d x d t = a 2 x + a 2 y b 2 x ( x 2 y 2 ) ) x * (\frac{dx}{dt} = a^2 x +a^2 y - b^2 x ( x^2 - y^2)) y ( d y d t = a 2 x + a 2 y b 2 ( x 2 y 2 ) ) y * (\frac{dy}{dt} = -a^2 x + a^2 y -b^2 (x^2 - y^2))

Adding the above equations we obtain: r d r d t = r 2 ( a 2 b 2 r 2 ) d r d t = r ( a 2 b 2 r 2 ) r \dfrac{dr}{dt} = r^2 (a^2 - b^2 r^2) \implies \dfrac{dr}{dt} = r (a^2 - b^2 r^2)

y ( d x d t = a 2 x + a 2 y b 2 x ( x 2 y 2 ) ) -y * (\frac{dx}{dt} = a^2 x +a^2 y - b^2 x ( x^2 - y^2)) x ( d y d t = a 2 x + a 2 y b 2 ( x 2 y 2 ) ) x * (\frac{dy}{dt} = -a^2 x + a^2 y -b^2 (x^2 - y^2))

Adding the above equations we obtain:

d θ d t = a 2 \dfrac{d\theta}{dt} = -a^2

The system of differentials above has a single critical point at r = 0 r = 0 . Assuming r > 0 r > 0 , the system above reduces to:

d r d t = r ( a 2 b 2 r 2 ) \dfrac{dr}{dt} = r (a^2 - b^2 r^2) d θ d t = a 2 \dfrac{d\theta}{dt} = -a^2

1 a 2 ( 1 r + b 2 ( a b r ) b 2 ( a + b r ) ) d r = 1 a 2 ln ( r a 2 b 2 r 2 ) = t + C \implies \dfrac{1}{a^2} \int (\dfrac{1}{r} + \dfrac{b}{2 (a - b r)} - \dfrac{b}{2 (a + b r)}) \: dr = \dfrac{1}{a^2} \ln(\dfrac{r}{\sqrt{a^2 - b^2 r^2}}) = t + C \implies

r 2 a 2 b 2 r 2 = C e 2 a 2 t \dfrac{r^2}{a^2 - b^2 r^2} = C e^{2 a^2 t} \implies r = a b 2 + C e 2 a 2 t r = \dfrac{a}{\sqrt{b^2 + C e^{-2 a^2 t}}} and θ = a 2 t + t 0 \theta = -a^2 t + t_{0} .

x = r c o s ( a 2 t + t 0 ) , y = r s i n ( a 2 t + t 0 ) x = r cos(-a^2 t + t_{0}), y = r sin(-a^2 t + t_{0}) \implies

x ( t ) = a c o s ( a 2 t + t 0 ) b 2 + C e 2 a 2 t x(t) = \dfrac{a * cos(-a^2 t + t_{0})}{\sqrt{b^2 + C e^{-2 a^2 t}}} y ( t ) = a s i n ( a 2 t + t 0 ) b 2 + C e 2 a 2 t y(t) = \dfrac{a * sin(-a^2 t + t_{0})}{\sqrt{b^2 + C e^{-2 a^2 t}}}

Using initial conditions x ( t = 0 ) = y ( t = 0 ) = 1 2 x(t = 0) = y(t = 0) = \dfrac{1}{2} we obtain:

1 4 ( b 2 + C ) = a 2 c o s 2 ( t 0 ) \dfrac{1}{4} (b^2 + C) = a^2 cos^2(t_{0})

1 4 ( b 2 + C ) = a 2 s i n 2 ( t 0 ) \dfrac{1}{4} (b^2 + C) = a^2 sin^2(t_{0})

C = 2 a 2 b 2 t 0 = π 4 , \implies C = 2 a^2 - b^2 \implies t_{0} = \dfrac{\pi}{4}, although t 0 = π 4 t_{0} = \dfrac{\pi}{4} is not needed here.

1 a 2 ( ln ( 2 a 2 b b ) ) 1 a 2 ( ln ( 3 ( 2 a 2 b ) b ) ) x ( t ) 2 + y ( t ) 2 d t = \int_{ \frac{1}{a^2} (\ln(\frac{\sqrt{2 a^2 - b}}{b})) }^{\frac{1}{a^2} (\ln(\frac{\sqrt{3(2 a^2 - b)}}{b}))} \sqrt{x(t)^2 + y(t)^2} \: dt =

1 a 2 ( ln ( 2 a 2 b b ) ) 1 a 2 ( ln ( 3 ( 2 a 2 b ) b ) ) e a 2 t ( b e a 2 t ) 2 + 2 a 2 b 2 \int_{ \frac{1}{a^2} (\ln(\frac{\sqrt{2 a^2 - b}}{b})) }^{\frac{1}{a^2} (\ln(\frac{\sqrt{3(2 a^2 - b)}}{b}))} \dfrac{e^{a^2 t}}{\sqrt{(b e^{a^2 t})^2 + 2 a^2 - b^2}}

Let b e a 2 t = 2 a 2 b 2 t a n θ b e^{a^2 t} = \sqrt{2 a^2 - b^2} tan\theta \implies d t = s e c 2 ( θ ) a 2 t a n θ d θ dt = \dfrac{sec^2(\theta)}{a^2 tan\theta} \: d\theta \implies

1 a 2 b π 4 π 3 s e c θ d θ = \dfrac{1}{a^2 * b} \int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}} sec\theta \: d\theta =

1 a 2 b l n ( s e c θ + t a n θ ) 1 a 2 ( ln ( 2 a 2 b b ) ) 1 a 2 ( ln ( 3 ( 2 a 2 b ) b ) ) = \dfrac{1}{a^2 * b} ln(sec\theta + tan\theta)|_{ \frac{1}{a^2} (\ln(\frac{\sqrt{2 a^2 - b}}{b})) }^{\frac{1}{a^2} (\ln(\frac{\sqrt{3(2 a^2 - b)}}{b}))} =

1 a 2 b l n ( 2 + 3 2 + 1 ) = \dfrac{1}{a^2 * b} ln(\dfrac{2+ \sqrt{3}}{\sqrt{2} + 1}) = 1 a 2 b ln ( α + β α + λ ) \dfrac{1}{a^2 * b} \ln \left(\frac{\alpha + \sqrt{\beta}}{\sqrt{\alpha} + \lambda}\right) α + β + λ = 6 \implies \alpha + \beta + \lambda = \fbox{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...