Falling object and the air resistance

Case 1: Air resistance exerts a retarding force on a falling body which is proportional to the velocity.

Case 2: Air resistance exerts a retarding force on a falling body which is proportional to the square of the velocity.

Let the mass of the falling bodies in both Cases be 10 kg 10 \text{ kg} and the acceleration due to gravity be 10 m/s 2 10\text{ m/s}^2 .

If V 1 V_{1} and V 2 V_{2} and k 1 k_{1} and k 2 k_{2} are the terminal velocities and proportionality constants of case 1 and case 2, respectively, and V 2 V 1 = 1 \dfrac{V_{2}}{V_{1}} = 1 , find: k 1 k 2 \dfrac{k_{1}}{\sqrt{k_{2}}} .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Dec 15, 2016

Case(1):

m d v d t = m g k 1 v d v d t = g a v , m \dfrac{dv}{dt} = mg - k_{1}v \implies \dfrac{dv}{dt} = g - av, where a = k 1 m a = \dfrac{k_{1}}{m} \implies

d v g a v = d t 1 a ln ( g a v ) = t + c \dfrac{dv}{g - av} = dt \implies -\dfrac{1}{a} \ln(g - av) = t+ c \implies

g a v = C e a t v ( t ) = 1 a ( g C e a t ) g - av = Ce^{-at} \implies v(t) = \dfrac{1}{a}(g - Ce^{-at})

v ( 0 ) = 0 C = g v ( t ) = g a ( 1 e a t ) v(0) = 0 \implies C = g \implies v(t) = \dfrac{g}{a}(1 - e^{-at})

The terminal velocity V 1 = l i m t v ( t ) = g a = m g k 1 V_{1} = lim_{t \rightarrow \infty} v(t) = \dfrac{g}{a} = \dfrac{mg}{k_{1}}

Case(2):

m d v d t = m g k 2 v 2 d v d t = g a 2 v , m \dfrac{dv}{dt} = mg - k_{2}v^2 \implies \dfrac{dv}{dt} = g - a^2v, where a 2 = k 2 m a^2 =\dfrac{k_{2}}{m} \implies

d v g a 2 v 2 = d t + c \int \dfrac{dv}{g - a^2v^2} = \int dt + c

Solving d v g a 2 v 2 \int \dfrac{dv}{g - a^2v^2} using partial fractions.

1 ( g a v ) ( g + a v ) = A g a v + B g + a v \dfrac{1}{(\sqrt{g} - av)(\sqrt{g} + av)} = \dfrac{A}{\sqrt{g} - av} + \dfrac{B}{\sqrt{g} + av} \implies

1 = ( A + B ) g + a ( A B ) v 1 = (A + B) \sqrt{g} + a * (A - B) v \implies

A + B = 1 g A + B = \dfrac{1}{\sqrt{g}} A B = 0 A - B = 0

A = 1 2 g = B 1 2 g 1 g a v + 1 g + a v d v = 1 2 g ln ( g + a v g a v ) = t + c \implies A = \dfrac{1}{2 \sqrt{g}} = B \implies \dfrac{1}{2 \sqrt{g}} \int \dfrac{1}{\sqrt{g} - av} + \dfrac{1}{\sqrt{g} + av} \: dv = \dfrac{1}{2 \sqrt{g}} \ln(\dfrac{\sqrt{g} + av}{\sqrt{g} - av}) = t + c \implies g + a v = C e 2 a g t ( g a v ) \sqrt{g} + av = C e^{2a\sqrt{g} t} (\sqrt{g} - av) \implies

v ( t ) = g a ( C e 2 a g t 1 C e 2 a g t + 1 ) v(t) = \dfrac{\sqrt{g}}{a} (\dfrac{C e^{2a\sqrt{g} t} - 1}{C e^{2a\sqrt{g} t} + 1})

v ( 0 ) = 0 C = 1 v ( t ) = g a ( e 2 a g t 1 e 2 a g t + 1 ) v(0) = 0 \implies C = 1 \implies v(t) = \dfrac{\sqrt{g}}{a} (\dfrac{e^{2a\sqrt{g} t} - 1}{e^{2a\sqrt{g} t} + 1})

or v ( t ) = g a ( 1 e 2 a g t 1 e 2 a g t ) v(t) = \dfrac{\sqrt{g}}{a} (\dfrac{1 - e^{-2a\sqrt{g} t}}{1 - e^{-2a\sqrt{g} t}})

The terminal velocity V 2 = l i m t v ( t ) = g a = m g k 2 V_{2} = lim_{t \rightarrow \infty} v(t) = \dfrac{\sqrt{g}}{a} = \sqrt{\dfrac{mg}{k_{2}}}

V 2 V 1 = 1 k 1 k 2 = m g \dfrac{V_{2}}{V_{1}} = 1 \implies \dfrac{k_{1}}{\sqrt{k_{2}}} = \sqrt{mg}

Using m = 10 m = 10 and g = 10 k 1 k 2 = 10 . g = 10 \implies \dfrac{k_{1}}{\sqrt{k_{2}}} = \boxed{10}.

When body has reached terminal velocity, a = d v d t = 0 a=\frac{dv}{dt}=0 So by Newton's Law, m g k 1 v 1 = m 0 mg-k_1v_1=m*0 So k 1 = m g v 1 k_1=\frac{mg}{v_1}

In case 2, m g k 2 v 2 2 = 0 mg-k_2 {v_2}^2=0 so k 2 = m g v 2 2 k_2=\frac{mg}{{v_2}^2}

v 1 = v 2 v_1=v_2 So k 1 k 2 = m g m g = m g = 100 = 10 \dfrac{k_{1}}{\sqrt{k_{2}}}=\frac{mg}{\sqrt{mg}}=\sqrt{mg}=\sqrt{100}=10

Thus our answer is 10.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...