A classical mechanics problem by Rocco Dalto

Let lamina S : x 2 + y 2 = 1 , 0 z h S: x^2 + y^2 = 1, 0 \leq z \leq h , and axis A : A: the line y = x , z = 0 y = x, z = 0 .

If the moment of inertia I I of the lamina S S of unit density about A A can be expressed as I = π h ( a b h 2 + c ) I = \pi h \left (\dfrac{a}{b} h^2 + c\right) , where a a , b b , and c c are coprime positive integers, find: a + b + c a + b + c .


Refer to previous problem. . .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 17, 2016

The points O : ( 0 , 0 , 0 ) O: (0,0,0) and A : ( 1 , 1 , 0 ) A: (1,1,0) are two points on the line y = x , z = 0 y = x, z = 0

Let point B : ( x , y , z ) B: (x,y,z) be any point not on the line above.

The distance from point B B to the line above is d = O B X O A O A d = \dfrac{|\vec{OB} \: X \: \vec{OA}|}{|\vec{OA}|}

O B = x i + y j + z k \vec{OB} = x \vec{i} + y \vec{j} + z \vec{k}

O A = i + j + 0 k \vec{OA} = \vec{i} + \vec{j} + 0 \vec{k}

O B X O A = z i + z j + ( x y ) k \vec{OB} \: X \: \vec{OA} = -z \vec{i} + z \vec{j} + (x - y) \vec{k}

d = 2 z 2 + ( x y ) 2 2 = z 2 + 1 2 ( x y ) 2 \implies d = \sqrt{\dfrac{{2 z^2 + (x - y)^2}}{2}} = \sqrt{z^2 + \dfrac{1}{2} (x - y)^2}

r ( θ , z ) = c o s ( θ ) i + s i n ( θ ) j + z k \vec{r}(\theta,z) = cos(\theta)\vec{i} + sin(\theta)\vec{j} + z\vec{k} where ( 0 < = θ < = 2 π ) (0 <= \theta <= 2\pi) and ( 0 < = z < = h ) (0 <= z <= h) \implies

r θ = s i n ( θ ) i + c o s ( θ ) j + 0 k , \dfrac{\partial \vec{r}}{\partial \theta} = -sin(\theta)\vec{i} + cos(\theta)\vec{j} + 0\vec{k}, and r z = 0 i + 0 j + k \dfrac{\partial \vec{r}}{\partial z} = 0\vec{i} + 0\vec{j} + \vec{k} \implies

N = r θ X r z = c o s ( θ ) i + s i n ( θ ) j + 0 k N = 1 \vec{N} = \dfrac{\partial \vec{r}}{\partial \theta} \: X \: \dfrac{\partial \vec{r}}{\partial z} = cos(\theta)\vec{i} + sin(\theta)\vec{j} + 0\vec{k} \implies |\vec{N}| =1

I = 0 2 π 0 h ( z 2 + 1 2 ( c o s θ s i n θ ) 2 ) ) d z d θ = I = \int_{0}^{2\pi} \int_{0}^{h} (z^2 + \dfrac{1}{2} (cos\theta - sin\theta)^2)) \: dz \: d\theta =

0 2 π 0 h ( z 2 + 1 2 ( 1 s i n ( 2 θ ) ) ) d z d θ = \int_{0}^{2\pi} \int_{0}^{h} (z^2 + \dfrac{1}{2} (1 - sin(2\theta))) \: dz \: d\theta =

0 2 π ( z 3 3 + 1 2 ( 1 s i n ( 2 θ ) ) z ) 0 h d θ = \int_{0}^{2\pi} (\dfrac{z^3}{3} + \dfrac{1}{2} (1 - sin(2\theta)) z)|_{0}^{h} \: d\theta =

0 2 π ( h 3 3 + 1 2 ( 1 s i n ( 2 θ ) ) h ) d θ = \int_{0}^{2\pi} (\dfrac{h^3}{3} + \dfrac{1}{2} (1 - sin(2\theta)) h) \: d\theta =

h 3 3 θ + 1 2 ( θ + 1 2 c o s ( 2 θ ) ) h 0 2 π = \dfrac{h^3}{3} \theta + \dfrac{1}{2} (\theta + \dfrac{1}{2} cos(2\theta)) h|_{0}^{2\pi} =

2 π 3 h 3 + π h = π h ( 2 3 h 2 + 1 ) = π h ( a b h 2 + c ) \dfrac{2 \pi}{3} h^3 + \pi h = \pi h(\dfrac{2}{3} h^2 + 1) = \pi h (\dfrac{a}{b} h^2 + c) \implies

a + b + c = 6 a + b + c = \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...