Let the axis A : the line x = x 0 + a t , y = y 0 + b t , z = z 0 + c t .
The moment of inertia I of a lamina S of unit density about A is:
I = ∫ S ∫ a 2 + b 2 + c 2 ( c ( y − y 0 ) − b ( z − z 0 ) ) 2 + ( a ( z − z 0 ) − c ( x − x 0 ) ) 2 + ( b ( x − x 0 ) − a ( y − y 0 ) ) 2 d A
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let B : ( x , y , z ) be any point not on the given line and choose the points 0 : ( x 0 , y 0 , z 0 ) and A : ( x 0 + a , y 0 + b , z 0 + c ) on the given line.
The distance from point B to the given line is d = ∣ O A ∣ ∣ O B X O A ∣
0 A = a i + b j + c k
0 B = ( x − x 0 ) i + ( y − y 0 ) j + ( z − z 0 ) k
O B X O A = ( c ( y − y 0 ) − b ( z − z 0 ) ) i + ( a ( z − z 0 ) − c ( x − x 0 ) ) j + ( b ( x − x 0 ) − a ( y − y 0 ) ) k
⟹ d 2 = a 2 + b 2 + c 2 ( c ( y − y 0 ) − b ( z − z 0 ) ) 2 + ( a ( z − z 0 ) − c ( x − x 0 ) ) 2 + ( b ( x − x 0 ) − a ( y − y 0 ) ) 2
∴ I = ∫ S ∫ d 2 d A =
∫ S ∫ a 2 + b 2 + c 2 ( c ( y − y 0 ) − b ( z − z 0 ) ) 2 + ( a ( z − z 0 ) − c ( x − x 0 ) ) 2 + ( b ( x − x 0 ) − a ( y − y 0 ) ) 2 d A