A classical mechanics problem by Rocco Dalto

Let lamina S : x 2 + y 2 = 1 , 0 z h S: x^2 + y^2 = 1, 0 \leq z \leq h , and axis A : A: the line x = x 0 + a t , y = y 0 + b t , z = z 0 + c t x = x_{0} + at, y = y_{0} +bt, z = z_{0} + ct .

Find a general formula for the moment of inertia I I of the lamina S S of unit density about A A , then let x 0 = y 0 = z 0 = 0 x_{0} = y_{0} = z_{0} = 0 and a = b = c a = b = c .

If the moment of inertia I I can be represented as I = α π h β ( λ + h 2 ) I = \dfrac{ \alpha \pi h}{\beta} ( \lambda + h^2) , where g c f ( α , β , λ ) = 1 gcf( \alpha ,\beta ,\lambda) = 1 .

Find: α + β + λ \alpha + \beta + \lambda

Note: My intention here is to have the person find a general formula for I I given lamina S : x 2 + y 2 = 1 , 0 z h S: x^2 + y^2 = 1, 0 \leq z \leq h of unit density, and axis A : A: the line x = x 0 + a t , y = y 0 + b t , z = z 0 + c t x = x_{0} + at, y = y_{0} +bt, z = z_{0} + ct , of course you need not do so, and just proceed using x 0 = y 0 = z 0 = 0 x_{0} = y_{0} = z_{0} = 0 and a = b = c a = b = c .

Refer to previous problem. . .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Dec 18, 2016

Let B : ( x , y , z ) B:(x,y,z) be any point not on the given line and choose the points 0 : ( x 0 , y 0 , z 0 ) 0:(x_{0},y_{0},z_{0}) and A : ( x 0 + a , y 0 + b , z 0 + c ) A:(x_0 + a,y_{0} + b,z_{0} + c) on the given line.

The distance from point B B to the given line is d = O B X O A O A d = \dfrac{|\vec{OB} \: X \: \vec{OA}|}{|\vec{OA}|}

0 A = a i + b j + c k \vec{0A} = a \vec{i} + b \vec{j} + c \vec{k}

0 B = ( x x 0 ) i + ( y y 0 ) j + ( z z 0 ) k \vec{0B} = (x - x_{0}) \vec{i} + (y - y_{0}) \vec{j} + (z - z_{0}) \vec{k}

O B X O A = ( c ( y y 0 ) b ( z z 0 ) ) i + ( a ( z z 0 ) c ( x x 0 ) ) j + ( b ( x x 0 ) a ( y y 0 ) ) k \vec{OB} \: X \: \vec{OA} = (c(y - y_{0}) - b(z - z_{0})) \vec{i} + (a(z - z_{0}) - c(x - x_{0})) \vec{j} + (b(x - x_{0}) - a(y - y_{0})) \vec{k}

d 2 = ( c ( y y 0 ) b ( z z 0 ) ) 2 + ( a ( z z 0 ) c ( x x 0 ) ) 2 + ( b ( x x 0 ) a ( y y 0 ) ) 2 a 2 + b 2 + c 2 \implies d^2 = \dfrac{(c(y - y_{0}) - b(z - z_{0}))^2 + (a(z - z_{0}) - c(x - x_{0}))^2 + (b(x - x_{0}) - a(y - y_{0}))^2}{a^2 + b^2 + c^2}

r ( θ , z ) = c o s ( θ ) i + s i n ( θ ) j + z k \vec{r}(\theta,z) = cos(\theta)\vec{i} + sin(\theta)\vec{j} + z\vec{k} where ( 0 < = θ < = 2 π ) (0 <= \theta <= 2\pi) and ( 0 < = z < = h ) (0 <= z <= h) \implies

r θ = s i n ( θ ) i + c o s ( θ ) j + 0 k , \dfrac{\partial \vec{r}}{\partial \theta} = -sin(\theta)\vec{i} + cos(\theta)\vec{j} + 0\vec{k}, and r z = 0 i + 0 j + k \dfrac{\partial \vec{r}}{\partial z} = 0\vec{i} + 0\vec{j} + \vec{k} \implies

N = r θ X r z = c o s ( θ ) i + s i n ( θ ) j + 0 k N = 1 \vec{N} = \dfrac{\partial \vec{r}}{\partial \theta} \: X \: \dfrac{\partial \vec{r}}{\partial z} = cos(\theta)\vec{i} + sin(\theta)\vec{j} + 0\vec{k} \implies |\vec{N}| =1 \implies

d 2 = ( c ( s i n θ y 0 ) b ( z z 0 ) ) 2 + ( a ( z z 0 ) c ( c o s θ x 0 ) ) 2 + ( b ( c o s θ x 0 ) a ( s i n θ y 0 ) ) 2 a 2 + b 2 + c 2 d^2 = \dfrac{(c(sin\theta - y_{0}) - b(z - z_{0}))^2 + (a(z - z_{0}) - c(cos\theta - x_{0}))^2 + (b(cos\theta - x_{0}) - a(sin\theta - y_{0}))^2}{a^2 + b^2 + c^2}

Simplifying we obtain:

Let f ( z ) = 2 ( y 0 c 2 + b c ( z z 0 ) + y 0 a 2 a b x 0 ) f(z) = 2(y_{0} c^2 + bc(z - z_{0}) +y_{0} a^2 - ab x_{0})

g ( z ) = 2 ( x 0 c 2 + a c ( z z 0 ) + + x 0 b 2 a b y 0 ) g(z) = 2(x_{0} c^2 + ac (z - z_{0})+ + x_{0} b^2 - ab y_{0})

m ( z ) = ( a 2 + b 2 ) ( z z 0 ) 2 + 2 c ( b y 0 + a x 0 ) ( z z 0 ) m(z) = (a^2 + b^2) (z - z_{0})^2 + 2c(b y_{0} + a x_{0}) (z - z_{0})

K = x 0 2 ( b 2 + c 2 ) + y 0 2 ( a 2 + c 2 ) 2 a b x 0 y 0 + a 2 + b 2 2 + c 2 K = x_{0}^2 (b^2 + c^2) + y_{0}^2 (a^2 + c^2) - 2ab x_{0} y_{0} + \dfrac{a^2 + b^2}{2} + c^2

d 2 ( θ , z ) = ( b 2 a 2 2 ) c o s ( 2 θ ) f ( z ) s i n θ g ( z ) c o s θ 2 a b s i n θ c o s θ + m ( z ) + K a 2 + b 2 + c 2 d^2(\theta,z) = \dfrac{(\dfrac{b^2 - a^2}{2}) cos(2\theta) - f(z) sin\theta - g(z) cos\theta - 2 ab sin\theta cos\theta + m(z) + K}{a^2 + b^2 + c^2}

I = 0 h 0 2 π d 2 ( θ , z ) d θ d z = I = \int_{0}^{h} \int_{0}^{2\pi} d^2(\theta,z) \: d\theta \: dz = ,

1 a 2 + b 2 + c 2 0 h ( ( b 2 a 2 4 ) s i n ( 2 θ ) + f ( z ) c o s θ g ( z ) s i n θ a b ( s i n θ ) 2 + ( m ( z ) + K ) θ ) 0 2 π d z = \dfrac{1}{a^2 + b^2 + c^2} * \int_{0}^{h} ((\dfrac{b^2 - a^2}{4}) sin(2\theta) + f(z) cos\theta - g(z) sin\theta - ab (sin\theta)^2 + (m(z) + K) \theta)|_{0}^{2\pi} \: dz =

2 π a 2 + b 2 + c 2 0 h m ( z ) + K d z = \dfrac{2\pi}{a^2 + b^2 + c^2} \int_{0}^{h} m(z) + K \: dz =

2 π a 2 + b 2 + c 2 ( ( a 2 + b 2 3 ) ( z z 0 ) 3 + c ( b y 0 + a x 0 ) ( z z 0 ) 2 + K z ) 0 h = \dfrac{2\pi}{a^2 + b^2 + c^2} ((\dfrac{a^2 + b^2}{3}) (z - z_{0})^3 + c(b y_{0} + a x_{0}) (z - z_{0})^2 + K z)|_{0}^{h} =

2 π a 2 + b 2 + c 2 ( ( a 2 + b 2 3 ) ( h z 0 ) 3 + c ( b y 0 + a x 0 ) ( h z 0 ) 2 + K h + ( a 2 + b 2 3 ) z 0 3 c ( b y 0 + a x 0 ) z 0 2 ) \dfrac{2\pi}{a^2 + b^2 + c^2} ((\dfrac{a^2 + b^2}{3}) (h - z_{0})^3 + c(b y_{0} + a x_{0}) (h - z_{0})^2 + K h + (\dfrac{a^2 + b^2}{3}) z_{0}^3 - c(b y_{0}+ a x_{0}) z_{0}^2 ) ,

where K = x 0 2 ( b 2 + c 2 ) + y 0 2 ( a 2 + c 2 ) 2 a b x 0 y 0 + a 2 + b 2 2 + c 2 K = x_{0}^2 (b^2 + c^2) + y_{0}^2 (a^2 + c^2) - 2ab x_{0} y_{0} + \dfrac{a^2 + b^2}{2} + c^2

Now letting x 0 = y 0 = z 0 = 0 x_{0} = y_{0} = z_{0} = 0 and a = b = c a = b = c we obtain:

I = 4 π h 9 ( 3 + h 2 ) = α π h β ( λ + h 2 ) I = \dfrac{ 4\pi h}{9} ( 3 + h^2) = \dfrac{ \alpha \pi h}{\beta} ( \lambda + h^2)

α + β + λ = 16 \implies \alpha + \beta + \lambda = \boxed{16}

Again, my intention was to have the person find a general formula for I I given lamina S : x 2 + y 2 = 1 , 0 z h S: x^2 + y^2 = 1, 0 \leq z \leq h of unit density, and axis A : A: the line x = x 0 + a t , y = y 0 + b t , z = z 0 + c t x = x_{0} + at, y = y_{0} +bt, z = z_{0} + ct .

Mark Hennings
Dec 23, 2016

The inertia tensor of a cylindrical shell of radius 1 1 and height h h about its centre of mass is I = ( 1 12 m ( 6 + h 2 ) 0 0 0 1 12 m ( 6 + h 2 ) 0 0 0 m ) \mathcal{I} \; =\; \left( \begin{array}{ccc} \frac{1}{12}m(6+h^2) & 0 & 0 \\ 0 & \tfrac{1}{12}m(6+h^2) & 0 \\ 0 & 0 & m \end{array} \right) and so the moment of inertia of the cylinder about the axis through the centre of mass in the direction of the unit vector v = ( a b c ) \mathbf{v} \; = \; \left(\begin{array}{c} a \\ b \\ c \end{array} \right) is I 0 = v T I v = 1 12 m ( 6 + h 2 ) ( a 2 + b 2 ) + m c 2 = 1 6 π h ( 6 + h 2 ) ( a 2 + b 2 ) + 2 π h c 2 I_0 \; = \; \mathbf{v}^T \mathcal{I} \mathbf{v} \; = \; \tfrac{1}{12}m(6 + h^2)(a^2 + b^2) + m c^2 \; = \; \tfrac16\pi h(6 + h^2)(a^2 + b^2) + 2\pi h c^2 since the mass of the cylinder is m = 2 π h m = 2\pi h .

The distance from the origin 0 \mathbf{0} to the above axis through the centre of mass, with equation r = λ v + a = λ v + ( 0 0 1 2 h ) λ R \mathbf{r} \; = \; \lambda\mathbf{v} + \mathbf{a} \; = \; \lambda\mathbf{v} + \left(\begin{array}{c} 0 \\ 0 \\ \frac12h\end{array} \right) \hspace{1cm} \lambda \in \mathbb{R} is a 2 ( a v ) 2 = 1 2 h 1 c 2 \sqrt{|\mathbf{a}|^2 - (\mathbf{a} \cdot \mathbf{v})^2} \; = \; \tfrac12h\sqrt{1 - c^2} and hence the moment of inertia of the cylinder about the axis in the direction of the unit vector v \mathbf{v} that passes through the origin is I = I 0 + 1 4 m h 2 ( 1 c 2 ) = I 0 + 1 2 π h 3 ( 1 c 2 ) I \; = \; I_0 + \tfrac14mh^2(1 - c^2) \; = \; I_0 + \tfrac12\pi h^3(1 - c^2) With a = b = c = 1 3 a = b = c = \tfrac{1}{\sqrt{3}} we have I = 1 9 π h ( 6 + h 2 ) + 2 3 π h + 1 3 π h 3 = 4 3 π h + 4 9 π h 3 = 4 9 π h ( 3 + h 2 ) I \; = \; \tfrac19\pi h(6 + h^2) + \tfrac23\pi h + \tfrac13\pi h^3 \; = \; \tfrac43\pi h + \tfrac49\pi h^3 \; =\; \tfrac49\pi h(3 + h^2) making the answer 16 \boxed{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...