An algebra problem by Rocco Dalto

Algebra Level 3

Let f : R 2 R 3 f: \mathbb R^2 \rightarrow \mathbb R^3 be linear transform defined by:

f ( x 1 x 2 ) = ( 3 x 1 x 2 x 2 x 1 + x 2 ) f \left( \begin{array}{ccc} x_{1} \\ x_{2} \\ \end{array} \right) = \left( \begin{array}{ccc} 3 x_{1} - x_{2}\\ x_{2} \\ x_{1} + x_{2} \end{array} \right)

and A = { ( 1 1 ) , ( 2 1 ) } A = \{ \left( \begin{array}{ccc} -1 \\ 1 \\ \end{array} \right), \left( \begin{array}{ccc} 2 \\ 1 \\ \end{array} \right) \} be basis for R 2 \mathbb R^2 and B = { ( 1 1 1 ) , ( 1 1 1 ) , ( 1 0 1 ) } B = \left \{ \left( \begin{array}{ccc} 1 \\ -1 \\ 1 \\ \end{array} \right), \left( \begin{array}{ccc} -1 \\ 1 \\ 1 \ \end{array} \right), \left( \begin{array}{ccc} 1 \\ 0 \\ 1 \ \end{array} \right) \right \} be a basis for R 3 . \mathbb R^3. .

Find a matrix representation for the linear transform above.

If X = ( 1 2 ) R 2 \: \textbf{X} = \left( \begin{array}{ccc} 1 \\ 2 \\ \end{array} \right) \in \mathbb R^2 and [f(X)] B = ( λ 1 λ 2 λ 3 ) \textbf{[f(X)]}_{\textbf{B}} = \left( \begin{array}{ccc} \lambda_1 \\ \lambda_2 \\ \lambda_3 \ \end{array} \right) ,

Find: λ 1 + λ 2 + λ 3 \lambda_1 + \lambda_2 + \lambda_3 .

Note: Of course you can find [f(X)] B = ( λ 1 λ 2 λ 3 ) \textbf{[f(X)]}_{\textbf{B}} = \left( \begin{array}{ccc} \lambda_1 \\ \lambda_2 \\ \lambda_3 \ \end{array} \right) without finding the matrix, but my intention was to find the matrix.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 23, 2016

f ( ( 1 1 ) ) = ( 4 1 0 ) f( \left( \begin{array}{ccc} -1 \\ 1 \\ \end{array} \right) ) = \left( \begin{array}{ccc} -4 \\ 1 \\ 0\\ \end{array} \right) = α 1 ( 1 1 1 ) + α 2 ( 1 1 1 ) + α 3 ( 1 0 1 ) \alpha_1 \left( \begin{array}{ccc} 1 \\ -1 \\ 1 \\ \end{array} \right) + \alpha_2 \left( \begin{array}{ccc} -1 \\ 1 \\ 1 \\ \end{array} \right) + \alpha_3 \left( \begin{array}{ccc} 1 \\ 0 \\ 1 \\ \end{array} \right)

f ( ( 2 1 ) ) = ( 5 1 3 ) f( \left( \begin{array}{ccc} 2 \\ 1 \\ \end{array} \right) ) = \left( \begin{array}{ccc} 5 \\ 1 \\ 3\\ \end{array} \right) = β 1 ( 1 1 1 ) + β 2 ( 1 1 1 ) + β 3 ( 1 0 1 ) \beta_1 \left( \begin{array}{ccc} 1 \\ -1 \\ 1 \\ \end{array} \right) + \beta_2 \left( \begin{array}{ccc} -1 \\ 1 \\ 1 \\ \end{array} \right) + \beta_3 \left( \begin{array}{ccc} 1 \\ 0 \\ 1 \\ \end{array} \right)

\implies

α 1 α 2 + α 3 = 4 \alpha_1 - \alpha_2 + \alpha_3 = -4 α 1 + α 2 = 1 -\alpha_1 + \alpha_2 = 1 α 1 + α 2 + α 3 = 0 \alpha_1+ \alpha_2 + \alpha_3 = 0

Solving the system we obtain:

( α ! α 2 α 3 ) = ( 1 2 3 ) \left( \begin{array}{ccc} \alpha_! \\ \alpha_2 \\ \alpha_3 \\ \end{array} \right) = \left( \begin{array}{ccc} 1 \\ 2 \\ -3 \\ \end{array} \right)

β 1 β 2 + β 3 = 5 \beta_1 - \beta_2 + \beta_3 = 5 β 1 + β 2 = 1 -\beta_1 + \beta_2 = 1 β 1 + β 2 + β 3 = 3 \beta_1+ \beta_2 + \beta_3 = 3

Solving the system we obtain:

( β ! β 2 β 3 ) = ( 2 1 6 ) \left( \begin{array}{ccc} \beta_! \\ \beta_2 \\ \beta_3 \\ \end{array} \right) = \left( \begin{array}{ccc} -2 \\ -1 \\ 6 \\ \end{array} \right)

The Matrix M M representation of the linear transform is:

M = 1 2 2 1 3 6 M = \left| \begin{array}{ccc} 1 & -2 \\ 2 & -1 \\ -3 & 6 \end{array} \right|

X = ( 1 2 ) = a 1 ( 1 1 ) + a 2 ( 2 1 ) \textbf{X} = \left( \begin{array}{ccc} 1 \\ 2 \\ \end{array} \right) = a_1 \left( \begin{array}{ccc} -1 \\ 1 \\ \end{array} \right) + a_2 \left( \begin{array}{ccc} 2 \\ 1 \\ \end{array} \right) \implies

a 1 + 2 a 2 = 1 -a_{1} + 2 a_{2} = 1 a 1 + a 2 = 2 a_{1} + a_{2} = 2

a 1 = a 2 = 1 \implies a_1 = a_2 = 1 \implies

[X] A = ( 1 1 ) \textbf{[X]}_{\textbf{A}} = \left( \begin{array}{ccc} 1 \\ 1 \\ \end{array} \right)

\implies

[f(X)] B = 1 2 2 1 3 6 ( 1 1 ) = ( 1 1 3 ) = ( λ 1 λ 2 λ 3 ) \textbf{[f(X)]}_{\textbf{B}} = \left| \begin{array}{ccc} 1 & -2 \\ 2 & -1 \\ -3 & 6 \end{array} \right| \left( \begin{array}{ccc} 1 \\ 1 \\ \end{array} \right) = \left( \begin{array}{ccc} -1 \\ 1 \\ 3\\ \end{array} \right) = \left( \begin{array}{ccc} \lambda_1 \\ \lambda_2 \\ \lambda_3 \ \end{array} \right)

λ 1 + λ 2 + λ 3 = 3 \implies \lambda_1 + \lambda_2+ \lambda_3 = \boxed{3}

Without finding the matrix. \textbf{Without finding the matrix.}

f ( ( 1 2 ) ) = ( 1 2 3 ) f( \left( \begin{array}{ccc} 1 \\ 2 \\ \end{array} \right) ) = \left( \begin{array}{ccc} -1 \\ 2 \\ 3\\ \end{array} \right) = λ 1 ( 1 1 1 ) + λ 2 ( 1 1 1 ) + λ 3 ( 1 0 1 ) \lambda_1 \left( \begin{array}{ccc} 1 \\ -1 \\ 1 \\ \end{array} \right) + \lambda_2 \left( \begin{array}{ccc} -1 \\ 1 \\ 1 \\ \end{array} \right) + \lambda_3 \left( \begin{array}{ccc} 1 \\ 0 \\ 1 \\ \end{array} \right)

\implies

λ 1 λ 2 + λ 3 = 1 \lambda_1 - \lambda_2 + \lambda_3 = -1 λ 1 + λ 2 = 2 -\lambda_1 + \lambda_2 = 2 λ 1 + λ 2 + λ 3 = 3 \lambda_1+ \lambda_2 + \lambda_3 = 3

Solving the system we obtain:

( λ 1 λ 2 λ 3 ) = ( 1 1 3 ) = [f(X)] B \left( \begin{array}{ccc} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \end{array} \right) = \left( \begin{array}{ccc} -1 \\ 1 \\ 3 \\ \end{array} \right) = \textbf{[f(X)]}_{\textbf{B}}

λ 1 + λ 2 + λ 3 = 3 \implies \lambda_1 + \lambda_2+ \lambda_3 = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...