An algebra problem by Rocco Dalto

Algebra Level 5

Let P 2 \mathbb P_{2} denote the set of all polynomials of degree two and R 2 × 2 \mathbb R_{2 \times2} denote the set of all 2 × 2 2\times 2 matrices.

Let f : P 2 R 2 × 2 f: \mathbb P_{2} \rightarrow \mathbb R_{2\times2} be linear transform defined by

f ( p 0 + p 1 x + p 2 x 2 ) = p 0 + p 1 p 1 + p 2 p 0 + p 2 p 2 . f(p_{0} + p_{1} x + p_{2} x^2) =\begin{vmatrix}{p_0 + p_1} && {p_1 + p_2} \\ {p_0 + p_2} && {p_2}\end{vmatrix} .

Denote
A = { 1 + x , x + x 2 , x 2 } A = \{1 + x, x + x^2, x^2 \} be a basis for P 2 \mathbb P_{2}
and
B = { 1 0 0 1 , 0 1 0 1 , 1 1 1 0 , 0 0 0 1 } B = \left \{ \begin{vmatrix}{1} && {0} \\ {0} && {1}\end{vmatrix} , \begin{vmatrix}{0} && {1} \\ {0} && {1}\end{vmatrix} , \begin{vmatrix}{1} && {1} \\ {1} && {0}\end{vmatrix} , \begin{vmatrix}{0} && {0} \\ {0} && {1}\end{vmatrix} \right \} a basis for R 2 x 2 \mathbb R_{2 \: x \: 2} .

Let the matrix M = [ a i j ] 4 x 3 M = [a_{ij}]_{4 \: x \: 3} represent the linear transform above and S = i = 1 4 j = 1 3 a i j \displaystyle S = \sum_{i = 1}^{4} \sum_{j = 1}^{3} a_{i j} .

Let p = 3 + 4 x x 2 \textbf{p} = 3 + 4 x - x^2 and [f(p)] B = ( γ 1 γ 2 γ 3 γ 4 ) \textbf{[f(p)]}_{\textbf{B}} = \left( \begin{array}{ccc} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma 4 \ \end{array} \right) and T = j = 1 4 γ j \displaystyle T = \sum_{j = 1}^{4} \gamma_j .

Find S + T S + T .

Refer to previous problem. . .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 25, 2016

f ( 1 + x ) = 2 1 1 0 = α 1 1 0 0 1 + α 2 0 1 0 1 + α 3 1 1 1 0 + α 4 0 1 0 1 = α 1 + α 3 α 2 + α 3 α 3 α 1 + α 2 + α 4 f(1 + x) = \left| \begin{array}{ccc} 2 & 1 \\ 1 & 0 \\ \\ \end{array} \right| = \alpha_{1} \left| \begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ \\ \end{array} \right| + \alpha_{2} \left| \begin{array}{ccc} 0 & 1 \\ 0 & 1 \\ \\ \end{array} \right| + \alpha_{3} \left| \begin{array}{ccc} 1 & 1 \\ 1 & 0 \\ \\ \end{array} \right| + \alpha_{4} \left| \begin{array}{ccc} 0 & 1 \\ 0 & 1 \\ \\ \end{array} \right| =\left| \begin{array}{ccc} \alpha_{1} + \alpha_3 & \alpha_{2} + \alpha_{3} \\ \alpha_3 & \alpha_1 + \alpha_2 + \alpha_4 \\ \\ \end{array} \right|

f ( x + x 2 ) = 1 2 1 1 = β 1 + β 3 β 2 + β 3 β 3 β 1 + β 2 + β 4 f(x + x^2) = \left| \begin{array}{ccc} 1 & 2 \\ 1 & 1 \\ \\ \end{array} \right| = \left| \begin{array}{ccc} \beta_{1} + \beta_3 & \beta_{2} + \beta_{3} \\ \beta_3 & \beta_1 + \beta_2 + \beta_4 \\ \\ \end{array} \right|

f ( x 2 ) = 0 1 1 1 = λ 1 + λ 3 λ 2 + λ 3 λ 3 λ 1 + λ 2 + λ 4 f(x^2) = \left| \begin{array}{ccc} 0 & 1 \\ 1 & 1 \\ \\ \end{array} \right| = \left| \begin{array}{ccc} \lambda_{1} + \lambda_3 & \lambda_{2} + \lambda_{3} \\ \lambda_3 & \lambda_1 + \lambda_2 + \lambda_4 \\ \\ \end{array} \right|

\implies

α 1 + α 3 = 2 \alpha_1 + \alpha_3 = 2

α 2 + α 3 = 1 \alpha_2 + \alpha_3 = 1

α 3 = 1 \alpha_3 = 1

α 1 + α 2 + α 4 = 0 \alpha_1 + \alpha_2 + \alpha_4 = 0

Solving the system we obtain:

( α 1 α 2 α 3 α 4 ) = ( 1 0 1 1 ) \left( \begin{array}{ccc} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha 4 \ \end{array} \right) = \left( \begin{array}{ccc} 1 \\ 0 \\ 1 \\ -1 \ \end{array} \right)

β 1 + β 3 = 1 \beta_1 + \beta_3 = 1

β 2 + β 3 = 2 \beta_2 + \beta_3 = 2

β 3 = 1 \beta_3 = 1

β 1 + β 2 + β 4 = 1 \beta_1 + \beta_2 + \beta_4 = 1

Solving the system we obtain:

( β 1 β 2 β 3 β 4 ) = ( 0 1 1 0 ) \left( \begin{array}{ccc} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta 4 \ \end{array} \right) = \left( \begin{array}{ccc} 0 \\ 1 \\ 1 \\ 0 \ \end{array} \right)

λ 1 + λ 3 = 0 \lambda_1 + \lambda_3 = 0

λ 2 + λ 3 = 1 \lambda_2 + \lambda_3 = 1

λ 3 = 1 \lambda_3 = 1

λ 1 + λ 2 + λ 4 = 1 \lambda_1 + \lambda_2 + \lambda_4 = 1

Solving the system we obtain:

( λ 1 λ 2 λ 3 λ 4 ) = ( 1 0 1 2 ) \left( \begin{array}{ccc} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda 4 \ \end{array} \right) = \left( \begin{array}{ccc} -1 \\ 0 \\ 1 \\ 2 \ \end{array} \right)

The matrix M = 1 0 1 0 1 0 1 1 1 1 0 2 M = \left| \begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 2\ \end{array} \right|

p = 3 + 4 x x 2 = a 1 + ( a 1 + a 2 ) x + ( a 2 + a 3 ) x 2 p = 3 + 4 x - x^2 = a_1 + (a_1 + a_2) x + (a_2 + a_3) x^2 \implies

[p] A = ( 3 1 2 ) \textbf{[p]}_\textbf{A} = \left( \begin{array}{ccc} 3 \\ 1 \\ -2 \\ \ \end{array} \right) \implies

[f(p)] B = M [p] A = ( 5 1 2 7 ) = ( γ 1 γ 2 γ 3 γ 4 ) \textbf{[f(p)]}_{\textbf{B}} = M \textbf{[p]}_\textbf{A} = \left( \begin{array}{ccc} 5 \\ 1 \\ 2 \\ -7 \\ \ \end{array} \right) = \left( \begin{array}{ccc} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma 4 \ \end{array} \right)

S = i = 1 4 j = 1 3 a i j = 5 \implies S = \sum_{i = 1}^{4} \sum_{j = 1}^{3} a_{i j} = 5 and T = j = 1 4 γ j = 1 S + T = 6. T = \sum_{j = 1}^{4} \gamma_j = 1 \implies S + T = 6.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...