An application using the Chinese Remainder Theorem

Supposing an ancient civilization predating the Mayans had a 2860 day year.

The 2860 day year consisted of a 13 day cycle, a 20 day cycle, and a 11 day cycle.

On what day of the 2860 day year would day 6 in the 13 day cycle, day 14 in the 20 day cycle, and day 4 in the 11 day cycle coincide?

Hint: Use the Chinese remainder theorem or an algebraic approach to solve the problem.


The answer is 994.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 5, 2017

I will solve this problem twice using two methods. First I will use the Chinese Remainder Theorem then I will use an algebraic approach. If your not familiar with the Chinese Remainder Theorem you can view the algebraic approach..

Using Chinese Remainder theorem:(Assuming your familiar with it.)

X 6 m o d 13 , X 14 m o d 20 , X 4 m o d 11 X \equiv 6 \mod{13}, \: X \equiv 14 \mod{20}, \: X \equiv 4 \mod{11} \implies

m = 13 20 11 = 2860 , M 1 = 20 11 = 220 , M 2 = 13 11 = 143 , M 3 = 13 20 = 260 m = 13 * 20 * 11 = 2860, \: M_{1} = 20 * 11 = 220, \: M_{2} = 13 * 11 = 143, \: M_{3} = 13 * 20 = 260

Let 220 y 1 1 m o d 13 , 143 y 2 1 m o d 20 , 260 y 3 1 m o d 11 220 y_{1} \equiv 1 \mod{13}, \: 143 y_{2} \equiv 1 \mod{20}, \: 260 y_{3} \equiv 1 \mod{11} :

To find the inverses y 1 , y 2 , y_{1}, y_{2}, and, y 3 y_{3} :

220 y 1 1 m o d 13 220 y 1 13 j 1 = 1 220 y_{1} \equiv 1 \mod{13} \implies 220 y_{1} - 13 j_{1} = 1

Using a repeated application of the Euclidean Algorithm we obtain: 220 = 13 16 + 12 , 13 = 12 ( 1 ) + 1 220 = 13 * 16 + 12, \: 13 = 12 * (1) + 1 \implies

1 = 13 12 = 13 ( 220 13 6 ) = 13 ( 17 ) 220 = 220 ( 1 ) 13 ( 17 ) 1 = 13 - 12 = 13 - (220 - 13 * 6) = 13 * (17) - 220 = 220 * (-1) - 13 * (-17) \implies

y 1 12 m o d 13 \boxed{y_{1} \equiv 12 \mod {13}}

143 y 2 1 m o d 20 143 y 2 20 j 2 = 1 143 y_{2} \equiv 1 \mod{20} \implies 143 y_{2} - 20 j_{2} = 1

Using a repeated application of the Euclidean Algorithm we obtain:

143 = 20 7 + 3 , 12 = 3 6 + 12 , 3 = 2 1 + 1 143 = 20 * 7 + 3, \: 12 = 3 * 6 + 12, \: 3 = 2 * 1 + 1 \implies

1 = 3 2 = 3 ( 20 3 6 ) = 3 7 20 = ( 143 20 7 ) 7 20 = 143 ( 7 ) 20 ( 50 ) 1 = 3 - 2 = 3 - (20 - 3 * 6) = 3 * 7 - 20 = (143 - 20 * 7) * 7 - 20 = 143 * (7) - 20 * (50) \implies

y 2 7 m o d 20 \boxed{y_{2} \equiv 7 \mod {20}}

260 y 3 1 m o d 11 260 y 3 11 j 3 = 1 260 y_{3} \equiv 1 \mod{11} \implies 260 y_{3} - 11 j_{3} = 1

Using a repeated application of the Euclidean Algorithm we obtain:

260 = 11 ( 23 ) + 7 , 7 = 4 ( 1 ) + 3 , 4 = 3 ( 1 ) + 1 260 = 11 * (23) + 7, \: 7 = 4 * (1) + 3, \: 4 = 3 * (1) + 1 \implies

1 = 4 3 = 4 ( 7 4 ) = 4 2 7 = ( 11 7 ) 2 7 = 11 ( 2 ) 7 3 = 1 = 4 - 3 = 4 - (7 - 4) = 4 * 2 - 7 = (11 - 7) * 2 - 7 = 11 * (2) - 7 * 3 =

11 2 ( 260 11 23 ) 3 = 11 ( 71 ) 260 ( 3 ) = 260 ( 3 ) 11 ( 71 ) 11 * 2 - (260 - 11 * 23) * 3 = 11 * (71) - 260 * (3) = 260 * (-3) - 11 * (-71) \implies

y 3 8 m o d 11 \boxed{y_{3} \equiv 8 \mod {11}}

For b 1 = 6 , b 2 = 14 , b 3 = 4 b_{1} = 6, \: b_{2} = 14, \: b_{3} = 4 X j = 1 3 b j M j y j m o d 2860 = \implies X \equiv \sum_{j = 1}^{3} b_{j} * M{j} * y_{j} \mod {2860} =

15840 + 14014 + 8320 = 38174 994 m o d 2860 . 15840 + 14014 + 8320 = 38174 \equiv \boxed{994 \mod{2860}}.

\therefore In the 2860 day year, day 6 in the 13 day cycle, day 14 in the 20 day cycle, and day 4 in the 11 day cycle would coincide on day 994 \boxed{994}

Using an algebraic Approach:

X 6 m o d 13 , X 14 m o d 20 , X 4 m o d 11 X \equiv 6 \mod{13}, \: X \equiv 14 \mod{20}, \: X \equiv 4 \mod{11} \implies

X = 13 j 1 + 6 = 20 j 2 + 14 = 11 j 3 + 4 X = 13 j_{1} + 6 = 20 j_{2} + 14 = 11 j_{3} + 4 \implies

13 j 1 20 j 2 = 8 13 j_{1} - 20 j_{2} = 8

Using a repeated application of the Euclidean Algorithm we obtain:

20 = 13 1 + 7 , 13 = 7 1 + 6 , 7 = 6 1 + 1 20 = 13 * 1 + 7, \: 13 = 7 * 1 + 6, \: 7 = 6 * 1 + 1 \implies

1 = 7 6 1 = 7 ( 13 7 1 ) = 7 2 13 = ( 20 13 ) 2 13 20 ( 2 ) 13 ( 3 ) 1 = 7 - 6 * 1 = 7 - (13 - 7 * 1) = 7 * 2 - 13 = (20 - 13) * 2 - 13 - 20 * (2) - 13 * (3) = 13 ( 3 ) 20 ( 2 ) = 13 * (-3) - 20 * (-2) \implies

13 ( 24 ) 20 ( 16 ) = 8 13 * (-24) - 20 * (-16) = 8 \implies

j 1 = 24 + 20 t , j 2 = 16 + 13 t \boxed{j_{1} = -24 + 20 * t}, \boxed{j_{2} = -16 + 13 * t}

and, 11 j 3 13 j 1 = 2 11 j_{3} - 13 j_{1} = 2

Using a repeated application of the Euclidean Algorithm we obtain:

13 = 11 1 + 2 , 11 = 2 5 + 1 13 = 11 * 1 + 2, \: 11 = 2 * 5 + 1 \implies

1 = 11 2 5 = 11 ( 13 11 ) 5 = 11 ( 6 ) 13 ( 5 ) 1 = 11 - 2 * 5 = 11 - (13 - 11) * 5 = 11 * (6) - 13 * (5) \implies

11 ( 12 ) 13 ( 10 ) = 2 11 * (12) -13 * (10) = 2 \implies j 3 = 12 + 13 t , \boxed{j_{3} = 12 + 13 * t^{*}}, j 1 = 10 + 11 t \boxed{j_{1} = 10 + 11 * t^{*}}

24 + 20 t = 10 + 11 t 20 t 11 t = 34 -24 + 20 t = 10 + 11 t^{*} \implies 20 t - 11 t^{*} = 34

20 = 11 1 + 9 , 11 = 9 1 + 2 , 9 = 2 4 + 1 20 = 11 * 1 + 9, \: 11 = 9 * 1 + 2, \: 9 = 2 * 4 + 1 \implies

1 = 9 2 4 = 9 ( 11 9 ) 84 = 9 5 11 4 = ( 20 11 ) 5 11 4 = 1 = 9 - 2 * 4 = 9 - (11 - 9) 8 4 = 9 * 5 - 11 * 4 = (20 - 11) * 5 - 11 * 4 =

20 ( 5 ) 11 ( 9 ) 20 ( 170 ) 11 ( 306 ) = 34 20 * (5) - 11 * (9) \implies 20 * (170) - 11 * (306) = 34 \implies

t = 170 + 11 m , \boxed{t = 170 + 11 m}, t = 306 + 20 m \boxed{t^{*} = 306 + 20 m}

\implies

j 1 = 3376 + 20 11 m \boxed{j_{1} = 3376 + 20 * 11 m} j 2 = 2194 + 13 11 m \boxed{j_{2} = 2194 + 13 * 11 m} j 3 = 3990 + 20 13 m \boxed{j_{3} = 3990 + 20 * 13 m}

j 1 , j 2 , j_{1}, j_{2}, and j 3 j_{3} satisfy all three equations X = 13 ( 3376 + 20 11 m ) + 6 = 43894 + 13 20 11 m = 43894 + 2860 m \implies X = 13 * (3376 + 20 * 11 m) + 6 = 43894 + 13 * 20 * 11 m = 43894 + 2860 m

X 43894 m o d 2860 994 m o d 2860. . \implies \boxed{X \equiv 43894 \mod 2860 \equiv 994 \mod 2860.}.

\therefore In the 2860 day year, day 6 in the 13 day cycle, day 14 in the 20 day cycle, and day 4 in the 11 day cycle would coincide on day 994 \boxed{994}

Here's a simpler way without doing all these Euclidean algorithm....

You essentially want to solve for "min (x) for x mod 13= 6, x mod 20 = 14, x mod 11 = 4".

By breaking up the second linear congruence, we get (x mod 5 = 4) and (x mod 4 = 2), pairing up these congruences gives

[1] (x mod 13 = 6) and (x mod 5 = 4)

Versus

[2] (x mod 4 = 2) and (x mod 11 = 4)

Solving for [1] by listing out the possible values gives:

x = 6, 19, 22, 35, ....
x = 4, 9, 14, 19 , ....

So x mod 65 = 19

Similarly for [2] we get x mod 44 = 26

So we got two linear congruences: (x mod 65 = 19) and (x mod 44 = 26)

Repeating this gives x mod (65 * 44 = 2860) = 994.

Pi Han Goh - 4 years, 5 months ago

Log in to reply

In this case, it is simpler. Thanks.

Rocco Dalto - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...