Supposing an ancient civilization predating the Mayans had a 2860 day year.
The 2860 day year consisted of a 13 day cycle, a 20 day cycle, and a 11 day cycle.
On what day of the 2860 day year would day 6 in the 13 day cycle, day 14 in the 20 day cycle, and day 4 in the 11 day cycle coincide?
Hint: Use the Chinese remainder theorem or an algebraic approach to solve the problem.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I will solve this problem twice using two methods. First I will use the Chinese Remainder Theorem then I will use an algebraic approach. If your not familiar with the Chinese Remainder Theorem you can view the algebraic approach..
Using Chinese Remainder theorem:(Assuming your familiar with it.)
X ≡ 6 m o d 1 3 , X ≡ 1 4 m o d 2 0 , X ≡ 4 m o d 1 1 ⟹
m = 1 3 ∗ 2 0 ∗ 1 1 = 2 8 6 0 , M 1 = 2 0 ∗ 1 1 = 2 2 0 , M 2 = 1 3 ∗ 1 1 = 1 4 3 , M 3 = 1 3 ∗ 2 0 = 2 6 0
Let 2 2 0 y 1 ≡ 1 m o d 1 3 , 1 4 3 y 2 ≡ 1 m o d 2 0 , 2 6 0 y 3 ≡ 1 m o d 1 1 :
To find the inverses y 1 , y 2 , and, y 3 :
2 2 0 y 1 ≡ 1 m o d 1 3 ⟹ 2 2 0 y 1 − 1 3 j 1 = 1
Using a repeated application of the Euclidean Algorithm we obtain: 2 2 0 = 1 3 ∗ 1 6 + 1 2 , 1 3 = 1 2 ∗ ( 1 ) + 1 ⟹
1 = 1 3 − 1 2 = 1 3 − ( 2 2 0 − 1 3 ∗ 6 ) = 1 3 ∗ ( 1 7 ) − 2 2 0 = 2 2 0 ∗ ( − 1 ) − 1 3 ∗ ( − 1 7 ) ⟹
y 1 ≡ 1 2 m o d 1 3
1 4 3 y 2 ≡ 1 m o d 2 0 ⟹ 1 4 3 y 2 − 2 0 j 2 = 1
Using a repeated application of the Euclidean Algorithm we obtain:
1 4 3 = 2 0 ∗ 7 + 3 , 1 2 = 3 ∗ 6 + 1 2 , 3 = 2 ∗ 1 + 1 ⟹
1 = 3 − 2 = 3 − ( 2 0 − 3 ∗ 6 ) = 3 ∗ 7 − 2 0 = ( 1 4 3 − 2 0 ∗ 7 ) ∗ 7 − 2 0 = 1 4 3 ∗ ( 7 ) − 2 0 ∗ ( 5 0 ) ⟹
y 2 ≡ 7 m o d 2 0
2 6 0 y 3 ≡ 1 m o d 1 1 ⟹ 2 6 0 y 3 − 1 1 j 3 = 1
Using a repeated application of the Euclidean Algorithm we obtain:
2 6 0 = 1 1 ∗ ( 2 3 ) + 7 , 7 = 4 ∗ ( 1 ) + 3 , 4 = 3 ∗ ( 1 ) + 1 ⟹
1 = 4 − 3 = 4 − ( 7 − 4 ) = 4 ∗ 2 − 7 = ( 1 1 − 7 ) ∗ 2 − 7 = 1 1 ∗ ( 2 ) − 7 ∗ 3 =
1 1 ∗ 2 − ( 2 6 0 − 1 1 ∗ 2 3 ) ∗ 3 = 1 1 ∗ ( 7 1 ) − 2 6 0 ∗ ( 3 ) = 2 6 0 ∗ ( − 3 ) − 1 1 ∗ ( − 7 1 ) ⟹
y 3 ≡ 8 m o d 1 1
For b 1 = 6 , b 2 = 1 4 , b 3 = 4 ⟹ X ≡ ∑ j = 1 3 b j ∗ M j ∗ y j m o d 2 8 6 0 =
1 5 8 4 0 + 1 4 0 1 4 + 8 3 2 0 = 3 8 1 7 4 ≡ 9 9 4 m o d 2 8 6 0 .
∴ In the 2860 day year, day 6 in the 13 day cycle, day 14 in the 20 day cycle, and day 4 in the 11 day cycle would coincide on day 9 9 4
Using an algebraic Approach:
X ≡ 6 m o d 1 3 , X ≡ 1 4 m o d 2 0 , X ≡ 4 m o d 1 1 ⟹
X = 1 3 j 1 + 6 = 2 0 j 2 + 1 4 = 1 1 j 3 + 4 ⟹
1 3 j 1 − 2 0 j 2 = 8
Using a repeated application of the Euclidean Algorithm we obtain:
2 0 = 1 3 ∗ 1 + 7 , 1 3 = 7 ∗ 1 + 6 , 7 = 6 ∗ 1 + 1 ⟹
1 = 7 − 6 ∗ 1 = 7 − ( 1 3 − 7 ∗ 1 ) = 7 ∗ 2 − 1 3 = ( 2 0 − 1 3 ) ∗ 2 − 1 3 − 2 0 ∗ ( 2 ) − 1 3 ∗ ( 3 ) = 1 3 ∗ ( − 3 ) − 2 0 ∗ ( − 2 ) ⟹
1 3 ∗ ( − 2 4 ) − 2 0 ∗ ( − 1 6 ) = 8 ⟹
j 1 = − 2 4 + 2 0 ∗ t , j 2 = − 1 6 + 1 3 ∗ t
and, 1 1 j 3 − 1 3 j 1 = 2
Using a repeated application of the Euclidean Algorithm we obtain:
1 3 = 1 1 ∗ 1 + 2 , 1 1 = 2 ∗ 5 + 1 ⟹
1 = 1 1 − 2 ∗ 5 = 1 1 − ( 1 3 − 1 1 ) ∗ 5 = 1 1 ∗ ( 6 ) − 1 3 ∗ ( 5 ) ⟹
1 1 ∗ ( 1 2 ) − 1 3 ∗ ( 1 0 ) = 2 ⟹ j 3 = 1 2 + 1 3 ∗ t ∗ , j 1 = 1 0 + 1 1 ∗ t ∗
− 2 4 + 2 0 t = 1 0 + 1 1 t ∗ ⟹ 2 0 t − 1 1 t ∗ = 3 4
2 0 = 1 1 ∗ 1 + 9 , 1 1 = 9 ∗ 1 + 2 , 9 = 2 ∗ 4 + 1 ⟹
1 = 9 − 2 ∗ 4 = 9 − ( 1 1 − 9 ) 8 4 = 9 ∗ 5 − 1 1 ∗ 4 = ( 2 0 − 1 1 ) ∗ 5 − 1 1 ∗ 4 =
2 0 ∗ ( 5 ) − 1 1 ∗ ( 9 ) ⟹ 2 0 ∗ ( 1 7 0 ) − 1 1 ∗ ( 3 0 6 ) = 3 4 ⟹
t = 1 7 0 + 1 1 m , t ∗ = 3 0 6 + 2 0 m
⟹
j 1 = 3 3 7 6 + 2 0 ∗ 1 1 m j 2 = 2 1 9 4 + 1 3 ∗ 1 1 m j 3 = 3 9 9 0 + 2 0 ∗ 1 3 m
j 1 , j 2 , and j 3 satisfy all three equations ⟹ X = 1 3 ∗ ( 3 3 7 6 + 2 0 ∗ 1 1 m ) + 6 = 4 3 8 9 4 + 1 3 ∗ 2 0 ∗ 1 1 m = 4 3 8 9 4 + 2 8 6 0 m
⟹ X ≡ 4 3 8 9 4 m o d 2 8 6 0 ≡ 9 9 4 m o d 2 8 6 0 . .
∴ In the 2860 day year, day 6 in the 13 day cycle, day 14 in the 20 day cycle, and day 4 in the 11 day cycle would coincide on day 9 9 4