An application using the Chinese Remainder Theorem

Number Theory Level pending

A data base B contains four files b 1 = ( 100 ) 2 , b 2 = ( 110 ) 2 , b 3 = ( 1010 ) 2 , b 4 = ( 1101 ) 2 . b_{1} = (100)_{2}, \: b_{2} = (110)_{2}, \: b_{3} = (1010)_{2}, \: b_{4} = (1101)_{2}.

Let the divisors m 1 = 5 , m 2 = 7 , m 3 = 11 , m 4 = 16 m_{1} = 5, \: m_{2} = 7, \: m_{3} = 11, \: m_{4} = 16 be the read sub keys.

Encipher the data base using the Chinese remainder theorem and determine the Cipher text X . X.

You can use an algebraic approach, but it would be more tedious.

Refer to previous problem. . .

Convert each b j b_{j} in base 2 to base 10 prior to doing the problem, then set up each congruence X b j m o d m j X \equiv b_{j} \mod {m_{j}} where ( 1 < = j < = 4 ) (1 <= j <= 4) .


The answer is 5389.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 6, 2017

Converting b 1 = ( 100 ) 2 , b 2 = ( 110 ) 2 , b 3 = ( 1010 ) 2 , b 4 = ( 1101 ) 2 b_{1} = (100)_{2}, \: b_{2} = (110)_{2}, \: b_{3} = (1010)_{2}, \: b_{4} = (1101)_{2} to base 10 we obtain:

b 1 = 4 , b 2 = 6 , b 3 = 10 , b 4 = 13. b_{1} = 4, \: b_{2} = 6, \: b_{3} = 10, \: b_{4} = 13.

Using Chinese Remainder theorem:

X 4 m o d 5 , X 6 m o d 7 , X 10 m o d 11 , X 13 m o d 16 X \equiv 4 \mod{5}, \: X \equiv 6 \mod{7}, \: X \equiv 10 \mod{11}, \: X \equiv 13 \mod{16} \implies

m = 5 7 11 16 = 6160 , M 1 = 7 11 16 = 1232 , M 2 = 5 11 16 = 880 , m = 5 * 7 * 11 * 16 = 6160, \: M_{1} = 7 * 11 * 16 = 1232, \: M_{2} = 5 * 11 * 16 = 880,

M 3 = 5 7 16 = 560 , M 4 = 5 7 11 = 385 M_{3} = 5 * 7 * 16 = 560, \: M_{4} = 5 * 7 * 11 = 385

Let 1232 y 1 1 m o d 5 , 880 y 2 1 m o d 7 , 560 y 3 1 m o d 11 , 385 y 4 1 m o d 16 1232 y_{1} \equiv 1 \mod{5}, \: 880 y_{2} \equiv 1 \mod{7}, \: 560 y_{3} \equiv 1 \mod{11}, 385 y_{4} \equiv 1 \mod{16} :

To find the inverses y 1 , y 2 , y_{1}, y_{2}, , y 3 , y 4 y_{3}, y_{4} :

The inverses in this problem can be easily found by inspection, but for clarity I will show all the work.

1232 y 1 1 m o d 5 1232 y 1 5 j 1 = 1 1232 y_{1} \equiv 1\mod{5} \implies 1232 y_{1} - 5 j_{1} = 1

Using a repeated application of the Euclidean Algorithm we obtain:

1232 = 5 246 + 2 , 5 = 2 2 + 1 1232 = 5 * 246 + 2, \: 5 = 2 * 2 + 1 \implies

1 = 5 2 2 = 5 ( 1232 5 ( 246 ) ) 2 = 5 ( 493 ) 1232 ( 2 ) = 1232 ( 2 ) 5 ( 493 ) 1 = 5 - 2 * 2 = 5 - (1232 - 5 * (246)) * 2 = 5 * (493) - 1232 * (2) = 1232 * (-2) - 5 * (-493)

y 1 2 m o d 5 3 m o d 5 \implies y_{1} \equiv -2 \mod{5} \equiv 3 \mod 5

y 1 3 m o d 5 \boxed{y_{1} \equiv 3 \mod{5}}

880 y 2 1 m o d 7 880 y 2 7 j 2 = 1 880 y_{2} \equiv 1 \mod{7} \implies 880 y_{2} - 7 j_{2} = 1

Using a repeated application of the Euclidean Algorithm we obtain:

880 = 125 7 + 5 , 7 = 5 1 + 2 , 5 = 2 2 + 1 880 = 125 * 7 + 5, \: 7 = 5 * 1 + 2, \: 5 = 2 * 2 + 1 \implies

1 = 5 2 2 = 5 ( 7 5 ) 2 = 5 3 7 2 = ( 880 125 7 ) 3 7 2 = 880 ( 3 ) 7 ( 377 ) 1 = 5 - 2 * 2 = 5 - (7 - 5) * 2 = 5 * 3 - 7 * 2 = (880 - 125 * 7) * 3 - 7 * 2 = 880 * (3) - 7 * (377)

y 2 3 m o d 7 \implies \boxed{y_{2} \equiv 3 \mod{7}}

560 y 3 1 m o d 11 560 y 3 11 j 3 = 1 560 y_{3} \equiv 1 \mod{11} \implies 560 y_{3} - 11 j_{3} = 1

Using a repeated application of the Euclidean Algorithm we obtain:

560 = 11 50 + 10 , 11 = 10 1 + 1 560 = 11 * 50 + 10, \: 11 = 10 * 1 + 1 \implies

1 = 11 10 = 11 ( 560 11 50 ) = 11 ( 51 ) 560 ( 1 ) = 560 ( 1 ) 11 ( 51 ) 1 = 11 - 10 = 11 - (560 - 11 * 50) = 11 * (51) - 560 * (1) = 560 * (-1) - 11 * (-51)

y 3 1 m o d 11 10 m o d 11 \implies y_{3} \equiv -1 \mod{11} \equiv 10 \mod{11}

y 3 10 m o d 11 \boxed{y_{3} \equiv 10 \mod{11}}

385 y 4 1 m o d 16 385 y 4 16 j 4 = 1 385 y_{4} \equiv 1 \mod{16} \implies 385 y_{4} - 16 j_{4} = 1

Using the Euclidean Algorithm we obtain:

385 = 16 24 + 1 1 = 385 ( 1 ) 16 ( 24 ) 385 = 16 * 24 + 1 \implies 1 = 385 * (1) - 16 * (24) \implies

y 4 1 m o d 16 \boxed{ y_{4} \equiv 1 \mod 16}

X j = 1 4 b j M j y j m o d 6160 \therefore X \equiv \sum_{j = 1}^{4} b_{j} * M_{j} * y_{j} \mod 6160 \equiv 91629 m o d 6160 5389 m o d 6160 91629 \mod 6160 \equiv 5389 \mod 6160 .

\therefore Cipher text X = 5389 \boxed{X = 5389} .

Note: \textbf{Note:} To decipher the data base B B we use the Cipher text X = 5389 X = 5389 and the divisors m 1 = 5 , m 2 = 7 , m 3 = 11 , m 4 = 16 m_{1} = 5, \: m_{2} = 7, \: m_{3} = 11, \: m_{4} = 16 to obtain:

b 1 5389 m o d 5 4 m o d 5 b_{1} \equiv 5389 \mod{5} \equiv 4 \mod 5

b 2 5389 m o d 7 6 m o d 7 b_{2} \equiv 5389 \mod{7} \equiv 6 \mod 7

b 3 5389 m o d 11 10 m o d 11 b_{3} \equiv 5389 \mod{11} \equiv 10 \mod 11

b 4 5389 m o d 16 13 m o d 16 \ b_{4} \equiv 5389 \mod{16} \equiv 13 \mod{16}

Converting to base 2 we obtain:

b 1 = ( 100 ) 2 , b 2 = ( 110 ) 2 , b 3 = ( 1010 ) 2 , b 4 = ( 1101 ) 2 b_{1} = (100)_{2}, \: b_{2} = (110)_{2}, \: b_{3} = (1010)_{2}, \: b_{4} = (1101)_{2} .

Note: \textbf{Note:} Knowledge of Cipher text X X and m j m_{j} permits access only to file j j , for access to the other files, it is necessary to know moduli other then m j m_{j} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...