A data base B contains four files
Let the divisors be the read sub keys.
Encipher the data base using the Chinese remainder theorem and determine the Cipher text
You can use an algebraic approach, but it would be more tedious.
Refer to previous problem. . .
Convert each in base 2 to base 10 prior to doing the problem, then set up each congruence where .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Converting b 1 = ( 1 0 0 ) 2 , b 2 = ( 1 1 0 ) 2 , b 3 = ( 1 0 1 0 ) 2 , b 4 = ( 1 1 0 1 ) 2 to base 10 we obtain:
b 1 = 4 , b 2 = 6 , b 3 = 1 0 , b 4 = 1 3 .
Using Chinese Remainder theorem:
X ≡ 4 m o d 5 , X ≡ 6 m o d 7 , X ≡ 1 0 m o d 1 1 , X ≡ 1 3 m o d 1 6 ⟹
m = 5 ∗ 7 ∗ 1 1 ∗ 1 6 = 6 1 6 0 , M 1 = 7 ∗ 1 1 ∗ 1 6 = 1 2 3 2 , M 2 = 5 ∗ 1 1 ∗ 1 6 = 8 8 0 ,
M 3 = 5 ∗ 7 ∗ 1 6 = 5 6 0 , M 4 = 5 ∗ 7 ∗ 1 1 = 3 8 5
Let 1 2 3 2 y 1 ≡ 1 m o d 5 , 8 8 0 y 2 ≡ 1 m o d 7 , 5 6 0 y 3 ≡ 1 m o d 1 1 , 3 8 5 y 4 ≡ 1 m o d 1 6 :
To find the inverses y 1 , y 2 , , y 3 , y 4 :
The inverses in this problem can be easily found by inspection, but for clarity I will show all the work.
1 2 3 2 y 1 ≡ 1 m o d 5 ⟹ 1 2 3 2 y 1 − 5 j 1 = 1
Using a repeated application of the Euclidean Algorithm we obtain:
1 2 3 2 = 5 ∗ 2 4 6 + 2 , 5 = 2 ∗ 2 + 1 ⟹
1 = 5 − 2 ∗ 2 = 5 − ( 1 2 3 2 − 5 ∗ ( 2 4 6 ) ) ∗ 2 = 5 ∗ ( 4 9 3 ) − 1 2 3 2 ∗ ( 2 ) = 1 2 3 2 ∗ ( − 2 ) − 5 ∗ ( − 4 9 3 )
⟹ y 1 ≡ − 2 m o d 5 ≡ 3 m o d 5
y 1 ≡ 3 m o d 5
8 8 0 y 2 ≡ 1 m o d 7 ⟹ 8 8 0 y 2 − 7 j 2 = 1
Using a repeated application of the Euclidean Algorithm we obtain:
8 8 0 = 1 2 5 ∗ 7 + 5 , 7 = 5 ∗ 1 + 2 , 5 = 2 ∗ 2 + 1 ⟹
1 = 5 − 2 ∗ 2 = 5 − ( 7 − 5 ) ∗ 2 = 5 ∗ 3 − 7 ∗ 2 = ( 8 8 0 − 1 2 5 ∗ 7 ) ∗ 3 − 7 ∗ 2 = 8 8 0 ∗ ( 3 ) − 7 ∗ ( 3 7 7 )
⟹ y 2 ≡ 3 m o d 7
5 6 0 y 3 ≡ 1 m o d 1 1 ⟹ 5 6 0 y 3 − 1 1 j 3 = 1
Using a repeated application of the Euclidean Algorithm we obtain:
5 6 0 = 1 1 ∗ 5 0 + 1 0 , 1 1 = 1 0 ∗ 1 + 1 ⟹
1 = 1 1 − 1 0 = 1 1 − ( 5 6 0 − 1 1 ∗ 5 0 ) = 1 1 ∗ ( 5 1 ) − 5 6 0 ∗ ( 1 ) = 5 6 0 ∗ ( − 1 ) − 1 1 ∗ ( − 5 1 )
⟹ y 3 ≡ − 1 m o d 1 1 ≡ 1 0 m o d 1 1
y 3 ≡ 1 0 m o d 1 1
3 8 5 y 4 ≡ 1 m o d 1 6 ⟹ 3 8 5 y 4 − 1 6 j 4 = 1
Using the Euclidean Algorithm we obtain:
3 8 5 = 1 6 ∗ 2 4 + 1 ⟹ 1 = 3 8 5 ∗ ( 1 ) − 1 6 ∗ ( 2 4 ) ⟹
y 4 ≡ 1 m o d 1 6
∴ X ≡ ∑ j = 1 4 b j ∗ M j ∗ y j m o d 6 1 6 0 ≡ 9 1 6 2 9 m o d 6 1 6 0 ≡ 5 3 8 9 m o d 6 1 6 0 .
∴ Cipher text X = 5 3 8 9 .
Note: To decipher the data base B we use the Cipher text X = 5 3 8 9 and the divisors m 1 = 5 , m 2 = 7 , m 3 = 1 1 , m 4 = 1 6 to obtain:
b 1 ≡ 5 3 8 9 m o d 5 ≡ 4 m o d 5
b 2 ≡ 5 3 8 9 m o d 7 ≡ 6 m o d 7
b 3 ≡ 5 3 8 9 m o d 1 1 ≡ 1 0 m o d 1 1
b 4 ≡ 5 3 8 9 m o d 1 6 ≡ 1 3 m o d 1 6
Converting to base 2 we obtain:
b 1 = ( 1 0 0 ) 2 , b 2 = ( 1 1 0 ) 2 , b 3 = ( 1 0 1 0 ) 2 , b 4 = ( 1 1 0 1 ) 2 .
Note: Knowledge of Cipher text X and m j permits access only to file j , for access to the other files, it is necessary to know moduli other then m j .