A geometry problem by Rocco Dalto

Geometry Level 4

cos π A = 1 2 2 + 2 + 3 cos π B = 1 2 2 + 2 + 2 cos π C = 1 2 2 + 2 + 1 \begin{aligned} \cos \dfrac \pi A & =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt3}} \\ \cos \dfrac \pi B & =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt2}} \\ \cos \dfrac \pi C & =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt1}} \end{aligned}

If A A , B B and C C are positive numbers satisfying the system of equations above, find A + B + C . A + B + C.


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

cos π C = 1 2 2 + 2 + 1 cos 2 π C = 1 2 + 3 4 2 cos 2 π C = 1 + 3 2 2 cos 2 π C 1 = 3 2 cos 2 π C = 3 2 . . . ( 1 ) 2 π C = π 6 C = 12 \begin{aligned} \cos \frac \pi C & = \frac 12 \sqrt{2+\color{#3D99F6}{\sqrt{2+\sqrt 1}}} \\ \cos^2 \frac \pi C & = \frac 12 + \frac {\color{#3D99F6}{\sqrt 3}}4 \\ 2\cos^2 \frac \pi C & = 1 + \frac {\color{#3D99F6}{\sqrt 3}}2 \\ 2\cos^2 \frac \pi C - 1 & = \frac {\color{#3D99F6}{\sqrt 3}}2 \\ \cos \frac {2\pi}C & = \frac {\color{#3D99F6}{\sqrt 3}}2 & \color{#3D99F6}{...(1)} \\ \frac {2\pi}C & = \frac \pi 6 \\ \implies C & = 12 \end{aligned}

Similarly,

( 1 ) : cos 2 π B = 2 + 2 2 cos 2 2 π B = 1 2 + 2 4 2 cos 2 2 π B 1 = 2 2 cos 4 π B = 2 2 . . . ( 2 ) 4 π B = π 4 B = 16 \begin{aligned} \color{#3D99F6}{(1)}: \quad \cos \frac {2\pi}B & = \frac {\sqrt{2+\color{#D61F06}{\sqrt 2}}}2 \\ \cos^2 \frac {2\pi}B & = \frac 12 + \frac {\color{#D61F06}{\sqrt 2}}4 \\ 2\cos^2 \frac {2\pi}B - 1 & = \frac {\color{#D61F06}{\sqrt 2}}2 \\ \cos \frac {4\pi}B & = \frac {\color{#D61F06}{\sqrt 2}}2 & \color{#D61F06} {...(2)} \\ \frac {4\pi}B & = \frac \pi 4 \\ \implies B & = 16 \end{aligned}

Again,

( 2 ) : cos 4 π A = 3 2 4 π A = π 6 A = 24 \begin{aligned} \color{#D61F06}{(2)}: \quad \cos \frac {4\pi}A & = \frac {\sqrt 3}2 \\ \frac {4\pi}A & = \frac \pi 6 \\ \implies A & = 24 \end{aligned}

Therefore, A + B + C = 24 + 16 + 12 = 52 A+B+C = 24+16+12 = \boxed{52}

Rocco Dalto
Oct 1, 2016

cos π A = 1 2 2 + 2 + 3 \large \cos \dfrac \pi A =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt3}} \implies

4 c o s 2 ( π A ) = {\bf 4cos^2(\frac{\pi}{A}) = } 2 + 2 + 3 {\bf 2 + \sqrt{2 + \sqrt{3}} \implies }

4 c o s 2 ( π A ) 2 = 2 + 3 {\bf 4cos^2(\frac{\pi}{A}) - 2 = \sqrt{2 + \sqrt{3}} \implies }

2 ( 2 c o s 2 ( π A ) 1 ) = 2 + 3 {\bf 2(2cos^2(\frac{\pi}{A}) - 1) = \sqrt{2 + \sqrt{3}} \implies }

2 c o s ( 2 π A ) = 2 + 3 {\bf 2cos(\frac{2\pi}{A}) = \sqrt{2 + \sqrt{3}} \implies }

4 c o s 2 ( 2 π A ) = 2 + 3 {\bf 4cos^2(\frac{2\pi}{A}) = 2 + \sqrt{3} \implies}

4 c o s 2 ( 2 π A ) 2 = 3 {\bf 4cos^2(\frac{2\pi}{A}) - 2 = \sqrt{3} \implies}

2 ( 2 c o s 2 ( 2 π A ) 1 ) = 3 {\bf 2(2cos^2(\frac{2\pi}{A}) - 1) = \sqrt{3} \implies }

2 c o s ( 4 π A ) = 3 {\bf 2cos(\frac{4\pi}{A}) = \sqrt{3} \implies }

c o s ( 4 π A ) = 3 2 {\bf cos(\frac{4\pi}{A}) = \frac{\sqrt{3}}{2} \implies }

4 π A = p i 6 {\bf \frac{4\pi}{A} = \frac{pi}{6} \implies }

A = 24 {\bf A = 24 }

Similarly, cos π B = 1 2 2 + 2 + 2 \large \cos \dfrac \pi B =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt2}} \implies

2 c o s ( 4 π B ) = 2 {\bf 2cos(\frac{4\pi}{B}) = \sqrt{2} \implies }

c o s ( 4 π B ) = 1 2 {\bf cos(\frac{4\pi}{B}) = \frac{1}{\sqrt{2}} \implies}

4 π B = π 4 {\bf \frac{4\pi}{B} = \frac{\pi}{4} \implies}

B = 16 {\bf B = 16 }

and

cos π C = 1 2 2 + 2 + 1 \large \cos \dfrac \pi C =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt1}} \implies

2 c o s ( 4 π C ) = 1 {\bf 2cos(\frac{4\pi}{C}) = 1 \implies }

c o s ( 4 π C ) = 1 2 {\bf cos(\frac{4\pi}{C}) = \frac{1}{{2}} \implies}

4 π C = π 3 {\bf \frac{4\pi}{C} = \frac{\pi}{3} \implies}

C = 12 {\bf C = 12 \implies }

A + B + C = 52 {\bf A + B + C = 52 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...