Using a hill cipher, find the matrix modulo 26 that replaces the plaintext word with the ciphertext word , where .
Express the answer as the modulo 26.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using a → 0 , b → 1 , … , z → 2 5 group the plaintext word and the enciphered text word into blocks of size 5. Using each plaintext block of size 5 form the plaintext matrix P 5 x 5 . Using each enciphered block of size 5 form the enciphered matrix C 5 x 5 , then A 5 x 5 ∗ P 5 X 5 ≡ C 5 x 5 m o d 2 6 ⟹ A 5 x 5 ≡ C 5 x 5 ∗ P 5 x 5 − 1 m o d 2 6 , where P 5 x 5 − 1 is the inverse of P 5 x 5 .
Let P = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 8 1 2 1 2 2 0 1 3 1 4 4 1 1 4 2 1 9 1 7 1 4 1 5 7 1 4 1 7 4 1 9 8 2 0 1 1 1 1 2 4 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
Since det ( P ) = 5 m o d 2 6 and ( 5 , 2 6 ) = 1 ⟹ P − 1 m o d 2 6 exists.
Set up the Augmented matrix P ∣ I :
P ∣ I = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 8 1 2 1 2 2 0 1 3 1 4 4 1 1 4 2 1 9 1 7 1 4 1 5 7 1 4 1 7 4 1 9 8 2 0 1 1 1 1 2 4 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
R o w 2 ↔ R o w 3 →
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 8 1 2 1 2 2 0 1 3 1 4 1 1 4 4 2 1 9 1 4 1 7 1 5 7 1 4 4 1 7 1 9 8 2 1 1 0 1 1 2 4 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
1 9 ∗ R o w 2 →
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 8 2 0 1 2 2 0 1 3 1 4 1 4 4 2 1 9 6 1 7 1 5 7 1 4 2 4 1 7 1 9 8 2 1 0 1 1 2 4 1 0 0 0 0 0 0 1 0 0 0 1 9 0 0 0 0 0 0 1 0 0 0 0 0 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
1 2 ∗ R o w 2 + R o w 1
2 2 ∗ R o w 2 + R o w 3
2 2 ∗ R o w 2 + R o w 4
2 4 ∗ R o w 2 + R o w 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 4 2 0 1 0 1 8 2 5 0 1 0 0 0 1 3 6 1 9 1 7 2 1 1 6 2 4 2 5 1 1 2 1 4 1 2 2 7 2 2 1 0 0 0 0 0 0 1 0 0 2 0 1 9 2 2 1 4 0 0 0 1 0 0 0 0 0 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
1 1 ∗ R o w 3 →
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 4 2 0 6 1 8 2 5 0 1 0 0 0 1 3 6 1 1 7 2 1 1 6 2 4 1 5 1 1 2 1 4 1 8 7 2 2 1 0 0 0 0 0 0 1 1 0 0 2 0 1 9 2 2 2 1 4 0 0 0 1 0 0 0 0 0 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
1 3 ∗ R o w 3 + R o w 1
2 0 ∗ R o w 3 + R o w 2
9 ∗ R o w 3 + R o w 4
5 ∗ R o w 3 + R o w 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 4 1 0 6 2 0 3 0 1 0 0 0 0 0 1 0 0 3 1 2 1 5 6 9 1 4 5 8 1 1 0 1 0 0 0 0 1 3 1 2 1 1 2 1 3 2 0 1 7 2 2 1 8 2 0 0 0 0 1 0 0 0 0 0 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
R o w 4 ↔ R o w 5 →
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 4 1 0 6 3 2 0 0 1 0 0 0 0 0 1 0 0 3 1 2 1 5 9 6 1 4 5 8 1 0 1 1 0 0 0 0 1 3 1 2 1 1 3 2 1 2 0 1 7 2 2 2 0 1 8 0 0 0 0 1 0 0 0 1 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
3 ∗ R o w 4 →
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 4 1 0 6 9 2 0 0 1 0 0 0 0 0 1 0 0 3 1 2 1 5 1 6 1 4 5 8 4 1 1 0 0 0 0 1 3 1 2 1 1 9 2 1 2 0 1 7 2 2 8 1 8 0 0 0 0 1 0 0 0 3 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
2 3 ∗ R o w 4 + R o w 1
1 4 ∗ R o w 4 + R o w 2
1 1 ∗ R o w 4 + R o w 3
2 0 ∗ R o w 4 + R o w 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 3 6 1 9 1 8 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 2 9 0 4 3 1 0 0 0 0 1 2 8 6 9 1 9 2 2 2 5 6 8 2 2 0 0 0 0 1 1 7 1 6 7 3 8 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
9 ∗ R o w 5 →
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 3 6 1 9 6 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 2 9 0 4 1 1 0 0 0 0 1 2 8 6 9 1 5 2 2 2 5 6 8 1 6 0 0 0 0 9 1 7 1 6 7 3 2 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
2 4 ∗ R o w 5 + R o w 1
1 7 ∗ R o w 5 + R o w 2
2 6 ∗ R o w 5 + R o w 3
2 2 ∗ R o w 5 + R o w 4
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 4 1 1 1 6 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 8 3 6 1 1 5 1 6 1 1 6 2 2 1 6 8 2 3 0 1 6 9 3 1 8 7 1 2 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
2 2 ∗ R o w 1 + R o w 2
2 5 ∗ R o w 1 + R o w 3
1 5 ∗ R o w 1 + R o w 4
2 0 ∗ R o w 1 + R o w 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 2 2 2 5 1 5 2 0 8 2 3 2 4 1 7 1 9 1 6 2 5 1 6 2 2 4 8 1 7 1 8 6 1 3 3 6 4 2 0 2 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
⟹
P − 1 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 2 2 2 5 1 5 2 0 8 2 3 2 4 1 7 1 9 1 6 2 5 1 6 2 2 4 8 1 7 1 8 6 1 3 3 6 4 2 0 2 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
and C = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 5 7 1 4 1 8 1 5 7 0 1 9 8 3 2 4 1 1 4 1 9 7 0 1 3 1 4 1 1 0 1 2 8 1 3 4 1 8 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6
⟹
A = C ∗ P − 1 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 2 1 1 3 1 4 4 1 8 1 9 1 7 1 2 7 2 3 2 1 1 2 1 1 0 1 2 1 2 0 6 1 2 1 1 2 5 3 1 0 1 6 2 3 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ m o d 2 6 ,
⟹ det ( A ) = 1 modulo 26.
Incidentally, these are the only two 25 letter words in the English language that I could find.