A number theory problem by Rocco Dalto

Number Theory Level pending

Using a hill cipher, find the 5 × 5 5 \times 5 matrix A A modulo 26 that replaces the plaintext word i m m u n o e l e c t r o p h o r e t i c a l l y immunoelectrophoretically with the ciphertext word p h o s p h a t i d y l e t h a n o l a m i n e s phosphatidylethanolamines , where a 0 , b 1 , , z 25 a \rightarrow 0, b \rightarrow 1, \ldots , z \rightarrow 25 .

Express the answer as the det ( A ) \det(A) modulo 26.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 5, 2017

Using a 0 , b 1 , , z 25 a \rightarrow 0, b \rightarrow 1, \ldots , z \rightarrow 25 group the plaintext word and the enciphered text word into blocks of size 5. Using each plaintext block of size 5 form the plaintext matrix P 5 x 5 P_{5 x 5} . Using each enciphered block of size 5 form the enciphered matrix C 5 x 5 C_{5 x 5} , then A 5 x 5 P 5 X 5 C 5 x 5 m o d 26 A 5 x 5 C 5 x 5 P 5 x 5 1 m o d 26 A_{5 x 5} * P_{5 X 5} \equiv C_{5 x 5} \bmod{26} \implies A_{5 x 5} \equiv C_{5 x 5} * P^{-1}_{5 x 5} \bmod{26} , where P 5 x 5 1 P^{-1}_{5 x 5} is the inverse of P 5 x 5 P_{5 x 5} .

Let P = [ 8 14 19 14 2 12 4 17 17 0 12 11 14 4 11 20 4 15 19 11 13 2 7 8 24 ] m o d 26 P = \begin{bmatrix}{8} && {14} && {19} && {14} && {2} \\ {12} && {4} && {17} && {17} && {0} \\ {12} && {11} && {14} && {4} && {11} \\ {20} && {4} && {15} && {19} && {11} \\ {13} && {2} && {7} && {8} && {24}\end{bmatrix} \bmod{26}

Since det ( P ) = 5 m o d 26 \det(P) = 5 \bmod{26} and ( 5 , 26 ) = 1 P 1 m o d 26 (5,26) = 1 \implies P^{-1} \bmod{26} exists.

Set up the Augmented matrix P I P|I :

P I = [ 8 14 19 14 2 1 0 0 0 0 12 4 17 17 0 0 1 0 0 0 12 11 14 4 11 0 0 1 0 0 20 4 15 19 11 0 0 0 1 0 13 2 7 8 24 0 0 0 0 1 ] m o d 26 P|I = \left[ \begin{array}{ccccc|ccccc} 8 & 14 & 19 & 14 & 2 & 1 & 0 & 0 & 0 & 0\\ 12 & 4 & 17 & 17 & 0 & 0 & 1 & 0 & 0 & 0\\ 12 & 11 & 14 & 4 & 11 & 0 & 0 & 1 & 0 & 0\\ 20 & 4 & 15 & 19 & 11 & 0 & 0 & 0 & 1 & 0\\ 13 & 2 & 7 & 8 & 24 & 0 & 0 & 0 & 0 & 1\\ \ \end{array} \right] \bmod{26}

R o w 2 R o w 3 Row_{2} \leftrightarrow Row_{3} \rightarrow

[ 8 14 19 14 2 1 0 0 0 0 12 11 14 4 11 0 0 1 0 0 12 4 17 17 0 0 1 0 0 0 20 4 15 19 11 0 0 0 1 0 13 2 7 8 24 0 0 0 0 1 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 8 & 14 & 19 & 14 & 2 & 1 & 0 & 0 & 0 & 0\\ 12 & 11 & 14 & 4 & 11 & 0 & 0 & 1 & 0 & 0\\ 12 & 4 & 17 & 17 & 0 & 0 & 1 & 0 & 0 & 0\\ 20 & 4 & 15 & 19 & 11 & 0 & 0 & 0 & 1 & 0\\ 13 & 2 & 7 & 8 & 24 & 0 & 0 & 0 & 0 & 1\\ \ \end{array} \right] \bmod{26}

19 R o w 2 19 * Row_{2} \rightarrow

[ 8 14 19 14 2 1 0 0 0 0 20 1 6 24 1 0 0 19 0 0 12 4 17 17 0 0 1 0 0 0 20 4 15 19 11 0 0 0 1 0 13 2 7 8 24 0 0 0 0 1 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 8 & 14 & 19 & 14 & 2 & 1 & 0 & 0 & 0 & 0\\ 20 & 1 & 6 & 24 & 1 & 0 & 0 & 19 & 0 & 0\\ 12 & 4 & 17 & 17 & 0 & 0 & 1 & 0 & 0 & 0\\ 20 & 4 & 15 & 19 & 11 & 0 & 0 & 0 & 1 & 0\\ 13 & 2 & 7 & 8 & 24 & 0 & 0 & 0 & 0 & 1\\ \ \end{array} \right] \bmod{26}

12 R o w 2 + R o w 1 12 * Row_{2} + Row_{1}

22 R o w 2 + R o w 3 22 * Row_{2} + Row_{3}

22 R o w 2 + R o w 4 22 * Row_{2} + Row_{4}

24 R o w 2 + R o w 5 24 * Row_{2} + Row_{5}

[ 14 0 13 16 14 1 0 20 0 0 20 1 6 24 1 0 0 19 0 0 10 0 19 25 22 0 1 2 0 0 18 0 17 1 7 0 0 2 1 0 25 0 21 12 22 0 0 14 0 1 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 14 & 0 & 13 & 16 & 14 & 1 & 0 & 20 & 0 & 0\\ 20 & 1 & 6 & 24 & 1 & 0 & 0 & 19 & 0 & 0\\ 10 & 0 & 19 & 25 & 22 & 0 & 1 & 2 & 0 & 0\\ 18 & 0 & 17 & 1 & 7 & 0 & 0 & 2 & 1 & 0\\ 25 & 0 & 21 & 12 & 22 & 0 & 0 & 14 & 0 & 1\\ \ \end{array} \right] \bmod{26}

11 R o w 3 11 * Row_{3} \rightarrow

[ 14 0 13 16 14 1 0 20 0 0 20 1 6 24 1 0 0 19 0 0 6 0 1 15 8 0 11 22 0 0 18 0 17 1 7 0 0 2 1 0 25 0 21 12 22 0 0 14 0 1 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 14 & 0 & 13 & 16 & 14 & 1 & 0 & 20 & 0 & 0\\ 20 & 1 & 6 & 24 & 1 & 0 & 0 & 19 & 0 & 0\\ 6 & 0 & 1 & 15 & 8 & 0 & 11 & 22 & 0 & 0\\ 18 & 0 & 17 & 1 & 7 & 0 & 0 & 2 & 1 & 0\\ 25 & 0 & 21 & 12 & 22 & 0 & 0 & 14 & 0 & 1\\ \ \end{array} \right] \bmod{26}

13 R o w 3 + R o w 1 13 * Row_{3} + Row_{1}

20 R o w 3 + R o w 2 20 * Row_ {3} + Row_{2}

9 R o w 3 + R o w 4 9 * Row_{3} + Row_{4}

5 R o w 3 + R o w 5 5 * Row_{3} + Row_{5}

[ 14 0 0 3 14 1 13 20 0 0 10 1 0 12 5 0 12 17 0 0 6 0 1 15 8 0 11 22 0 0 20 0 0 6 1 0 21 18 1 0 3 0 0 9 10 0 3 20 0 1 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 14 & 0 & 0 & 3 & 14 & 1 & 13 & 20 & 0 & 0\\ 10 & 1 & 0 & 12 & 5 & 0 & 12 & 17 & 0 & 0\\ 6 & 0 & 1 & 15 & 8 & 0 & 11 & 22 & 0 & 0\\ 20 & 0 & 0 & 6 & 1 & 0 & 21 & 18 & 1 & 0\\ 3 & 0 & 0 & 9 & 10 & 0 & 3 & 20 & 0 & 1\\ \ \end{array} \right] \bmod{26}

R o w 4 R o w 5 Row_{4} \leftrightarrow Row_{5} \rightarrow

[ 14 0 0 3 14 1 13 20 0 0 10 1 0 12 5 0 12 17 0 0 6 0 1 15 8 0 11 22 0 0 3 0 0 9 10 0 3 20 0 1 20 0 0 6 1 0 21 18 1 0 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 14 & 0 & 0 & 3 & 14 & 1 & 13 & 20 & 0 & 0\\ 10 & 1 & 0 & 12 & 5 & 0 & 12 & 17 & 0 & 0\\ 6 & 0 & 1 & 15 & 8 & 0 & 11 & 22 & 0 & 0\\ 3 & 0 & 0 & 9 & 10 & 0 & 3 & 20 & 0 & 1\\ 20 & 0 & 0 & 6 & 1 & 0 & 21 & 18 & 1 & 0\\ \ \end{array} \right] \bmod{26}

3 R o w 4 3 * Row_{4} \rightarrow

[ 14 0 0 3 14 1 13 20 0 0 10 1 0 12 5 0 12 17 0 0 6 0 1 15 8 0 11 22 0 0 9 0 0 1 4 0 9 8 0 3 20 0 0 6 1 0 21 18 1 0 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 14 & 0 & 0 & 3 & 14 & 1 & 13 & 20 & 0 & 0\\ 10 & 1 & 0 & 12 & 5 & 0 & 12 & 17 & 0 & 0\\ 6 & 0 & 1 & 15 & 8 & 0 & 11 & 22 & 0 & 0\\ 9 & 0 & 0 & 1 & 4 & 0 & 9 & 8 & 0 & 3\\ 20 & 0 & 0 & 6 & 1 & 0 & 21 & 18 & 1 & 0\\ \ \end{array} \right] \bmod{26}

23 R o w 4 + R o w 1 23 * Row_{4} + Row_{1}

14 R o w 4 + R o w 2 14 * Row_{ 4} + Row_{2}

11 R o w 4 + R o w 3 11 * Row_{4} + Row_{3}

20 R o w 4 + R o w 5 20 * Row _{4} + Row_{5}

[ 13 0 0 0 2 1 12 22 0 17 6 1 0 0 9 0 8 25 0 16 1 0 1 0 0 0 6 6 0 7 9 0 0 1 4 0 9 8 0 3 18 0 0 0 3 0 19 22 1 8 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 13 & 0 & 0 & 0 & 2 & 1 & 12 & 22 & 0 & 17\\ 6 & 1 & 0 & 0 & 9 & 0 & 8 & 25 & 0 & 16\\ 1 & 0 & 1 & 0 & 0 & 0 & 6 & 6 & 0 & 7\\ 9 & 0 & 0 & 1 & 4 & 0 & 9 & 8 & 0 & 3\\ 18 & 0 & 0 & 0 & 3 & 0 & 19 & 22 & 1 & 8\\ \ \end{array} \right] \bmod{26}

9 R o w 5 9 * Row_{5} \rightarrow

[ 13 0 0 0 2 1 12 22 0 17 6 1 0 0 9 0 8 25 0 16 1 0 1 0 0 0 6 6 0 7 9 0 0 1 4 0 9 8 0 3 6 0 0 0 1 0 15 16 9 20 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 13 & 0 & 0 & 0 & 2 & 1 & 12 & 22 & 0 & 17\\ 6 & 1 & 0 & 0 & 9 & 0 & 8 & 25 & 0 & 16\\ 1 & 0 & 1 & 0 & 0 & 0 & 6 & 6 & 0 & 7\\ 9 & 0 & 0 & 1 & 4 & 0 & 9 & 8 & 0 & 3\\ 6 & 0 & 0 & 0 & 1 & 0 & 15 & 16 & 9 & 20\\ \ \end{array} \right] \bmod{26}

24 R o w 5 + R o w 1 24 * Row_{ 5} + Row_{1}

17 R o w 5 + R o w 2 17 * Row_{5} + Row_{2}

26 R o w 5 + R o w 3 26 * Row_{5} + Row_{3}

22 R o w 5 + R o w 4 22 * Row_{5} + Row{4}

[ 1 0 0 0 0 1 8 16 8 3 4 1 0 0 0 0 3 11 23 18 1 0 1 0 0 0 6 6 0 7 11 0 0 1 0 0 1 22 16 1 6 0 0 0 1 0 15 16 9 20 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 1 & 0 & 0 & 0 & 0 & 1 & 8 & 16 & 8 & 3\\ 4 & 1 & 0 & 0 & 0 & 0 & 3 & 11 & 23 & 18\\ 1 & 0 & 1 & 0 & 0 & 0 & 6 & 6 & 0 & 7\\ 11 & 0 & 0 & 1 & 0 & 0 & 1 & 22 & 16 & 1\\ 6 & 0 & 0 & 0 & 1 & 0 & 15 & 16 & 9 & 20\\ \ \end{array} \right] \bmod{26}

22 R o w 1 + R o w 2 22 * Row_{1} + Row_{2}

25 R o w 1 + R o w 3 25 * Row_{1} + Row_{3}

15 R o w 1 + R o w 4 15 * Row{1} + Row_{4}

20 R o w 1 + R o w 5 20 * Row_{1} + Row_{5}

[ 1 0 0 0 0 1 8 16 8 3 0 1 0 0 0 22 23 25 17 6 0 0 1 0 0 25 24 16 18 4 0 0 0 1 0 15 17 2 6 20 0 0 0 0 1 20 19 24 13 2 ] m o d 26 \left[ \begin{array}{ccccc|ccccc} 1 & 0 & 0 & 0 & 0 & 1 & 8 & 16 & 8 & 3\\ 0 & 1 & 0 & 0 & 0 & 22 & 23 & 25 & 17 & 6\\ 0 & 0 & 1 & 0 & 0 & 25 & 24 & 16 & 18 & 4\\ 0 & 0 & 0 & 1 & 0 & 15 & 17 & 2 & 6 & 20\\ 0 & 0 & 0 & 0 & 1 & 20 & 19 & 24 & 13 & 2\\ \ \end{array} \right] \bmod{26}

\implies

P 1 = [ 1 8 16 8 3 22 23 25 17 6 25 24 16 18 4 15 17 2 6 20 20 19 24 13 2 ] m o d 26 P^{-1} = \begin{bmatrix}{1} && {8} && {16} && {8} && {3} \\ {22} && {23} && {25} && {17} && {6} \\ {25} && {24} && {16} && {18} && {4} \\ {15} && {17} && {2} && {6} && {20} \\ {20} && {19} && {24} && {13} && {2}\\ \end{bmatrix} \bmod{26}

and C = [ 15 7 24 0 12 7 0 11 13 8 14 19 4 14 13 18 8 19 11 4 15 3 7 0 18 ] m o d 26 C = \begin{bmatrix}{15} && {7} && {24} && {0} && {12}\\ {7} && {0} && {11} && {13} && {8}\\ {14} && {19} && {4} && {14} && {13}\\ {18} && {8} && {19} && {11} && {4}\\ {15} && {3} && {7} && {0 } && {18}\\ \end{bmatrix} \bmod{26}

\implies

A = C P 1 = [ 21 19 21 21 25 13 17 12 20 3 14 12 11 6 10 4 7 0 12 16 18 23 1 11 23 ] m o d 26 A = C * P^{-1} = \begin{bmatrix}{21} && {19} && {21} && {21} && {25} \\ {13} && {17} && {12} && {20} && {3} \\ {14} && {12} && {11} && {6} && {10} \\ {4} && {7} && {0} && {12} && {16} \\ {18} && {23} && {1} && {11} && {23}\end{bmatrix} \bmod{26} ,

det ( A ) = 1 \implies \det(A) = \boxed{1} modulo 26.

Incidentally, these are the only two 25 letter words in the English language that I could find.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...