Let f : R 3 → R 5 be linear transform defined by:
f ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 3 ∗ x 1 − x 2 + x 3 x 2 + 4 ∗ x 3 5 ∗ x 1 − x 2 + x 3 4 ∗ x 1 − x 3 7 ∗ x 2 + x 3 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞
and A = ⎩ ⎨ ⎧ ⎝ ⎛ 4 3 1 ⎠ ⎞ , ⎝ ⎛ 7 1 9 1 1 ⎠ ⎞ , ⎝ ⎛ 1 0 1 2 ⎠ ⎞ ⎭ ⎬ ⎫ be a basis for R 3 . .
and B = ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 8 1 2 1 2 2 0 1 3 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞ , ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 1 4 4 1 1 4 2 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞ , ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 1 9 1 7 1 4 1 5 7 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞ , ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 1 4 1 7 4 1 9 8 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞ , ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 2 0 1 1 1 1 2 4 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞ ⎭ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎫ be a basis for R 5 . .
If M = [ a i j ] 5 x 3 represents the linear transform above find S = i = 1 ∑ 5 j = 1 ∑ 3 a i j . Express the result to 4 decimal places.
General Case:
Let f : R n → R m be linear transform defined by:
f
⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎛
x
1
x
2
.
.
.
x
n
⎠
⎟
⎟
⎟
⎟
⎟
⎟
⎞
=
⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
c
1
1
∗
x
1
+
.
.
.
+
c
1
k
∗
x
k
+
.
.
.
+
c
1
n
∗
x
n
c
2
1
∗
x
1
+
.
.
.
+
c
2
k
∗
x
k
+
.
.
.
+
c
2
n
∗
x
n
.
.
.
c
j
1
∗
x
1
+
.
.
.
+
c
j
k
∗
x
k
+
.
.
.
+
c
j
n
∗
x
n
.
.
.
c
m
1
∗
x
1
+
.
.
.
+
c
m
k
∗
x
k
+
.
.
.
+
c
m
n
∗
x
n
⎠
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞
Let V j = ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ v 1 j v 2 j . . . v n j ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ ∈ R n
and A = { V j ∣ ( 1 < = j < = n ) } be a basis for R n .
Let W j = ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ w 1 j w 2 j . . . w m j ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ ∈ R m
and B = { W j ∣ ( 1 < = j < = m ) } be a basis for R m .
Write a program in any language to find the matrix M = [ a i j ] m x n representation of the general linear transform above and the sum S = i = 1 ∑ m j = 1 ∑ n a i j .
Make certain A and B are bases for R n and R m .
You can use the program written to find the matrix M = [ a i j ] 5 x 3 that represents the linear transform above and output S = i = 1 ∑ 5 j = 1 ∑ 3 a i j .
Let X = ⎝ ⎛ 1 2 3 ⎠ ⎞ ∈ R 3
To check the matrix M = [ a i j ] 5 x 3 found, first find [ f ( X ) ] B without using the matrix M = [ a i j ] 5 x 3 , then find [ f ( X ) ] B using the matrix M = [ a i j ] 5 x 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
I wrote the program to find the matrix M = [ a i j ] m x n representation of the general linear transform above and the sum S = i = 1 ∑ m j = 1 ∑ n a i j in Free Pascal.
program matrixrepresentaionoflineartransform;
{restricted to f:Rn --> Rm}
uses crt;
const maxnum = 100;
type matrix = array[1 .. maxnum,1 .. maxnum] of real;
var coeff,b,a,sol,c:matrix;
procedure getsize;
begin
writeln('Let f:Rn ---> Rm be linear transform ');
writeln('Enter n for Rn');
readln(n);
writeln('Enter m for Rm');
readln(m);
end;
procedure getcoefficients;
var j,k:integer;
begin
for j:= 1 to m do
begin
writeln('For row,', j, ', enter each coefficient of Xj for Rm');
for k:= 1 to n do
begin
read(coeff[j,k]);
end;
end;
end;
procedure getaugmentedmatrix;
var j,k,q,r,s:integer;
begin
assign(myfile,'holdmatrix.txt');
rewrite(myfile);
writeln('To Enter ', n, ' basis vectors for Rn: ');
for q:= 1 to n do
begin
write('Enter elements of vector ', q, ' : ');
for k:= 1 to n do
begin
read(b[k,q]);
end;
for j:= 1 to m do
begin
sum:= 0;
for k:= 1 to n do
begin
sum:= sum + coeff[j,k] * b[k,q];
end;
vec[j,q]:= sum;
end;
end;
writeln('To Enter ', m, ' basis vectors for Rm: ');
for q:= 1 to m do
begin
write('Enter elements of vector ', q, ' : ');
for k:= 1 to m do
begin
read(a[k,q]);
end;
end;
for q:= 1 to m do
begin
for k:= 1 to m do
begin
write(myfile,a[q,k],' ');
end;
for r:= 1 to n do
begin
write(myfile,vec[q,r],' ');
end;
writeln(myfile);
end;
reset(myfile);
for j:= 1 to m do
begin
for k:= 1 to m + n do
begin
read(myfile,a[j,k]);
end;
end;
close(myfile);
{To show augmented matrix - for show work}
for q:= 1 to m do
begin
for k:= 1 to m do
begin
write(mywork,a[q,k]:0:0,' ');
end;
for r:= 1 to n do
begin
write(mywork,vec[q,r]:0:0,' ');
end;
writeln(mywork);
end;
writeln(mywork);
writeln(mywork);
end;
procedure hold(var c:matrix; a:matrix);
var k,j:integer;
begin
for k:= 1 to m do
begin
for j:= 1 to m do
begin
c[k,j]:= a[k,j];
end;
end;
end;
procedure switch2(var c:matrix; l,p,n:integer);
var q:integer;
begin{switch}
for q:= 1 to n do
begin{m}
end;{m}
end;{switch}
procedure safeguard2(var c:matrix; l:integer; var p:integer; n:integer; var v:integer; var product:real);
var q:integer;
begin{safeguard}
v:=0;
if (c[l,l] = 0) then
begin{then}
v:= 1;
q:= l;
while ((q + 1) <= n) and (v = 1) do
begin{loop}
if c[q + 1,l] <> 0 then
begin{then}
end;{then}
q:= q + 1;
end;{loop}
end;{then}
end;{safeguard}
procedure operation11(var a:matrix; l,n:integer; var product:real);
var k,q:integer;
procedure operation21(var a:matrix; l,n:integer);
var k,r,q:integer;
FUNCTION DETERMINANT(a:matrix; n:integer; PRODUCT:real):real;
var j:integer;
begin{DETERMINANT}
DIAGONAL:= 1;
FOR j:= 1 TO N DO
BEGIN{LOOP}
DIAGONAL:= DIAGONAL * (a[j,j]);
END;{LOOP}
IF DIAGONAL = 1 THEN
DET:= 1/PRODUCT
ELSE
DET:= 0;
DETERMINANT:= DET;
END;{DETERMINANT}
procedure switch(var c:matrix; l,p:integer);
var q:integer;
begin{switch}
for q:= 1 to m + n do
begin{m}
end;{m}
end;{switch}
procedure safeguard(var c:matrix; l:integer; var p:integer; var v:integer);
var q:integer;
begin{safeguard}
v:=0;
if (c[l,l] = 0) then
begin{then}
v:= 1;
q:= l;
while ((q + 1) <= n + m) and (v = 1) do
begin{loop}
if c[q + 1,l] <> 0 then
begin{then}
end;{then}
q:= q + 1;
end;{loop}
end;{then}
end;{safeguard}
procedure operation1(var a:matrix; l:integer);
var q,k:integer;
begin{op1}
for q:= 1 to m + n do
begin{m}
s[l,q]:= a[l,q]/a[l,l];
end;{m}
x:= 1/(a[l,l]);
for q:= 1 to m + n do
begin{m}
a[l,q]:= s[l,q];
end;{m}
writeln(mywork, x:0:4,' * Row',l);
writeln(mywork);
for q:= 1 to m do
begin
for k:= 1 to m + n do
begin
write(mywork, a[q,k]:0:4,' ');
end;
writeln(mywork);
end;
writeln(mywork);
end;{op1}
procedure operation2(var a:matrix; l:integer);
var q,r,k:integer;
begin{op2}
for q:= 1 to m do
begin{q}
if q <> l then
begin{then}
x:= a[q,l];
for r:= 1 to m + n do
begin{m}
s[q,r]:= -1 * x * a[l,r] + a[q,r];
end;{m}
for r:= 1 to m + n do
begin{m}
a[q,r]:= s[q,r];
end;{m}
writeln(mywork, -1 * x:0:4,' * ROW ', l,' + ROW',q);
end;{then}
end;{q}
writeln(mywork);
for q:= 1 to m do
begin
for k:= 1 to m + n do
begin
write(mywork, a[q,k]:0:4,' ');
end;
writeln(mywork);
end;
writeln(mywork);
end;{op2}
PROCEDURE SHOWDATA;
VAR J,k:INTEGER;
BEGIN
assign(myfile2,'holdsolution.txt');
rewrite(myfile2);
writeln;
writeln('Matrix Representation of linear transformation f: Rn ---> Rm:');
writeln('-------------------------------------------------------------');
writeln;
for j:= 1 to m do
begin
for k:= m + 1 to m + n do
begin
write(myfile2,a[j,k],' ');
end;
writeln(myfile2);
end;
reset(myfile2);
for j:= 1 to m do
begin
for k:= 1 to n do
begin
read(myfile2,sol[j,k]);
end;
end;
close(myfile2);
for j:= 1 to m do
begin
for k:= 1 to n do
begin
write(sol[j,k]:0:4,' ');
end;
writeln;
end;
{For brillant only}
sum:= 0;
for j:= 1 to m do
begin
for k:= 1 to n do
begin
sum:= sum + sol[j,k];
end;
end;
writeln;
writeln('Sum of elements of matrix = ',sum:0:4);
END;
begin
assign(mywork,'mywork.txt');
rewrite(mywork);
getsize;
getcoefficients;
getaugmentedmatrix;
{add - to check each basis for Rn and Rm}
{checking basis for Rn}
PRODUCT:= 1;
for l:= 1 to n do
begin{l}
safeguard2(b,l,p,n,v,PRODUCT);
if v = 0 then
begin{then}
operation11(b,l,n,PRODUCT);
operation21(b,l,n);
end;{then}
end;{l}
DETB:= DETERMINANT(b,n,PRODUCT);
writeln;
while detb = 0 do
begin
writeln('Set of vectors is not a basis for Rn');
writeln;
getaugmentedmatrix;
PRODUCT:= 1;
for l:= 1 to n do
begin{l}
safeguard2(b,l,p,n,v,PRODUCT);
if v = 0 then
begin{then}
operation11(b,l,n,PRODUCT);
operation21(b,l,n);
end;{then}
end;{l}
DETB:= DETERMINANT(b,n,PRODUCT);
end;
{checking basis for Rm}
hold(c,a);
PRODUCT:= 1;
for l:= 1 to m do
begin{l}
safeguard2(c,l,p,m,v,PRODUCT);
if v = 0 then
begin{then}
operation11(c,l,m,PRODUCT);
operation21(c,l,m);
end;{then}
end;{l}
DETA:= DETERMINANT(c,m,PRODUCT);
writeln;
while deta = 0 do
begin
writeln('Set of vectors is not a basis for Rm');
writeln;
getaugmentedmatrix;
hold(c,a);
PRODUCT:= 1;
for l:= 1 to m do
begin{l}
safeguard2(c,l,p,m,v,PRODUCT);
if v = 0 then
begin{then}
operation11(c,l,m,PRODUCT);
operation21(c,l,m);
end;{then}
end;{l}
DETA:= DETERMINANT(c,m,PRODUCT);
end;
{Only getting through if deta <> 0 and detb <> 0}
for l:= 1 to m do
begin{l}
safeguard(a,l,p,v);
if v = 0 then
begin{then}
operation1(a,l);
operation2(a,l);
end;{then}
end;{l}
showdata;
readln;
readln;
end.
Running the above program we obtain:
Work shown in my file "mywork.txt":
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 8 1 2 1 2 2 0 1 3 1 4 4 1 1 4 2 1 9 1 7 1 4 1 5 7 1 4 1 7 4 1 9 8 2 0 1 1 1 1 2 4 1 0 7 1 8 1 5 2 2 1 3 6 3 2 7 1 7 1 4 4 3 1 9 5 1 3 8 9 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
where, f ⎝ ⎛ 4 3 1 ⎠ ⎞ = ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 1 0 7 1 8 1 5 2 2 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞
f ⎝ ⎛ 7 1 9 1 1 ⎠ ⎞ = ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 1 3 6 3 2 7 1 7 1 4 4 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞
f ⎝ ⎛ 1 0 1 2 ⎠ ⎞ = ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ 3 1 9 5 1 3 8 9 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞
0 . 1 2 5 0 ∗ R o w 1
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 1 2 . 0 0 0 0 1 2 . 0 0 0 0 2 0 . 0 0 0 0 1 3 . 0 0 0 0 1 . 7 5 0 0 4 . 0 0 0 0 1 1 . 0 0 0 0 4 . 0 0 0 0 2 . 0 0 0 0 2 . 3 7 5 0 1 7 . 0 0 0 0 1 4 . 0 0 0 0 1 5 . 0 0 0 0 7 . 0 0 0 0 1 . 7 5 0 0 1 7 . 0 0 0 0 4 . 0 0 0 0 1 9 . 0 0 0 0 8 . 0 0 0 0 0 . 2 5 0 0 0 . 0 0 0 0 1 1 . 0 0 0 0 1 1 . 0 0 0 0 2 4 . 0 0 0 0 1 . 2 5 0 0 7 . 0 0 0 0 1 8 . 0 0 0 0 1 5 . 0 0 0 0 2 2 . 0 0 0 0 1 . 6 2 5 0 6 3 . 0 0 0 0 2 7 . 0 0 0 0 1 7 . 0 0 0 0 1 4 4 . 0 0 0 0 3 . 8 7 5 0 9 . 0 0 0 0 5 1 . 0 0 0 0 3 8 . 0 0 0 0 9 . 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
− 1 2 . 0 0 0 0 ∗ R O W 1 + R O W 2
− 1 2 . 0 0 0 0 ∗ R O W 1 + R O W 3
− 2 0 . 0 0 0 0 ∗ R O W 1 + R O W 4
− 1 3 . 0 0 0 0 ∗ R O W 1 + R O W 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 7 5 0 0 − 1 7 . 0 0 0 0 − 1 0 . 0 0 0 0 − 3 1 . 0 0 0 0 − 2 0 . 7 5 0 0 2 . 3 7 5 0 − 1 1 . 5 0 0 0 − 1 4 . 5 0 0 0 − 3 2 . 5 0 0 0 − 2 3 . 8 7 5 0 1 . 7 5 0 0 − 4 . 0 0 0 0 − 1 7 . 0 0 0 0 − 1 6 . 0 0 0 0 − 1 4 . 7 5 0 0 0 . 2 5 0 0 − 3 . 0 0 0 0 8 . 0 0 0 0 6 . 0 0 0 0 2 0 . 7 5 0 0 1 . 2 5 0 0 − 8 . 0 0 0 0 3 . 0 0 0 0 − 1 0 . 0 0 0 0 5 . 7 5 0 0 1 . 6 2 5 0 4 3 . 5 0 0 0 7 . 5 0 0 0 − 1 5 . 5 0 0 0 1 2 2 . 8 7 5 0 3 . 8 7 5 0 − 3 7 . 5 0 0 0 4 . 5 0 0 0 − 3 9 . 5 0 0 0 − 4 1 . 3 7 5 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
− 0 . 0 5 8 8 ∗ R o w 2
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 7 5 0 0 1 . 0 0 0 0 − 1 0 . 0 0 0 0 − 3 1 . 0 0 0 0 − 2 0 . 7 5 0 0 2 . 3 7 5 0 0 . 6 7 6 5 − 1 4 . 5 0 0 0 − 3 2 . 5 0 0 0 − 2 3 . 8 7 5 0 1 . 7 5 0 0 0 . 2 3 5 3 − 1 7 . 0 0 0 0 − 1 6 . 0 0 0 0 − 1 4 . 7 5 0 0 0 . 2 5 0 0 0 . 1 7 6 5 8 . 0 0 0 0 6 . 0 0 0 0 2 0 . 7 5 0 0 1 . 2 5 0 0 0 . 4 7 0 6 3 . 0 0 0 0 − 1 0 . 0 0 0 0 5 . 7 5 0 0 1 . 6 2 5 0 − 2 . 5 5 8 8 7 . 5 0 0 0 − 1 5 . 5 0 0 0 1 2 2 . 8 7 5 0 3 . 8 7 5 0 2 . 2 0 5 9 4 . 5 0 0 0 − 3 9 . 5 0 0 0 − 4 1 . 3 7 5 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
− 1 . 7 5 0 0 ∗ R O W 2 + R O W 1
1 0 . 0 0 0 0 ∗ R O W 2 + R O W 3
3 1 . 0 0 0 0 ∗ R O W 2 + R O W 4
2 0 . 7 5 0 0 ∗ R O W 2 + R O W 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 1 9 1 2 0 . 6 7 6 5 − 7 . 7 3 5 3 − 1 1 . 5 2 9 4 − 9 . 8 3 8 2 1 . 3 3 8 2 0 . 2 3 5 3 − 1 4 . 6 4 7 1 − 8 . 7 0 5 9 − 9 . 8 6 7 6 − 0 . 0 5 8 8 0 . 1 7 6 5 9 . 7 6 4 7 1 1 . 4 7 0 6 2 4 . 4 1 1 8 0 . 4 2 6 5 0 . 4 7 0 6 7 . 7 0 5 9 4 . 5 8 8 2 1 5 . 5 1 4 7 6 . 1 0 2 9 − 2 . 5 5 8 8 − 1 8 . 0 8 8 2 − 9 4 . 8 2 3 5 6 9 . 7 7 9 4 0 . 0 1 4 7 2 . 2 0 5 9 2 6 . 5 5 8 8 2 8 . 8 8 2 4 4 . 3 9 7 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
− 0 . 1 2 9 3 ∗ R o w 3
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 1 9 1 2 0 . 6 7 6 5 1 . 0 0 0 0 − 1 1 . 5 2 9 4 − 9 . 8 3 8 2 1 . 3 3 8 2 0 . 2 3 5 3 1 . 8 9 3 5 − 8 . 7 0 5 9 − 9 . 8 6 7 6 − 0 . 0 5 8 8 0 . 1 7 6 5 − 1 . 2 6 2 4 1 1 . 4 7 0 6 2 4 . 4 1 1 8 0 . 4 2 6 5 0 . 4 7 0 6 − 0 . 9 9 6 2 4 . 5 8 8 2 1 5 . 5 1 4 7 6 . 1 0 2 9 − 2 . 5 5 8 8 2 . 3 3 8 4 − 9 4 . 8 2 3 5 6 9 . 7 7 9 4 0 . 0 1 4 7 2 . 2 0 5 9 − 3 . 4 3 3 5 2 8 . 8 8 2 4 4 . 3 9 7 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
− 1 . 1 9 1 2 ∗ R O W 3 + R O W 1
− 0 . 6 7 6 5 ∗ R O W 3 + R O W 2
1 1 . 5 2 9 4 ∗ R O W 3 + R O W 4
9 . 8 3 8 2 ∗ R O W 3 + R O W 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 − 0 . 9 1 7 3 − 1 . 0 4 5 6 1 . 8 9 3 5 1 3 . 1 2 5 5 8 . 7 6 1 4 1 . 4 4 4 9 1 . 0 3 0 4 − 1 . 2 6 2 4 − 3 . 0 8 3 7 1 1 . 9 9 2 4 1 . 6 1 3 1 1 . 1 4 4 5 − 0 . 9 9 6 2 − 6 . 8 9 7 3 5 . 7 1 3 9 3 . 3 1 7 5 − 4 . 1 4 0 7 2 . 3 3 8 4 − 6 7 . 8 6 3 1 9 2 . 7 8 5 2 4 . 1 0 4 6 4 . 5 2 8 5 − 3 . 4 3 3 5 − 1 0 . 7 0 3 4 − 2 9 . 3 8 2 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
0 . 0 7 6 2 ∗ R o w 4
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 − 0 . 9 1 7 3 − 1 . 0 4 5 6 1 . 8 9 3 5 1 . 0 0 0 0 8 . 7 6 1 4 1 . 4 4 4 9 1 . 0 3 0 4 − 1 . 2 6 2 4 − 0 . 2 3 4 9 1 1 . 9 9 2 4 1 . 6 1 3 1 1 . 1 4 4 5 − 0 . 9 9 6 2 − 0 . 5 2 5 5 5 . 7 1 3 9 3 . 3 1 7 5 − 4 . 1 4 0 7 2 . 3 3 8 4 − 5 . 1 7 0 3 9 2 . 7 8 5 2 4 . 1 0 4 6 4 . 5 2 8 5 − 3 . 4 3 3 5 − 0 . 8 1 5 5 − 2 9 . 3 8 2 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
0 . 9 1 7 3 ∗ R O W 4 + R O W 1
1 . 0 4 5 6 ∗ R O W 4 + R O W 2
− 1 . 8 9 3 5 ∗ R O W 4 + R O W 3
− 8 . 7 6 1 4 ∗ R O W 4 + R O W 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 1 . 2 2 9 4 0 . 7 8 4 8 − 0 . 8 1 7 5 − 0 . 2 3 4 9 1 4 . 0 5 0 8 1 . 1 3 1 1 0 . 5 9 5 0 − 0 . 0 0 1 2 − 0 . 5 2 5 5 1 0 . 3 1 7 9 − 1 . 4 2 5 3 − 9 . 5 4 6 9 1 2 . 1 2 8 6 − 5 . 1 7 0 3 1 3 8 . 0 8 4 6 3 . 3 5 6 5 3 . 6 7 5 8 − 1 . 8 8 9 3 − 0 . 8 1 5 5 − 2 2 . 2 3 7 5 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
0 . 0 7 1 2 ∗ R o w 5
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 1 . 2 2 9 4 0 . 7 8 4 8 − 0 . 8 1 7 5 − 0 . 2 3 4 9 1 . 0 0 0 0 1 . 1 3 1 1 0 . 5 9 5 0 − 0 . 0 0 1 2 − 0 . 5 2 5 5 0 . 7 3 4 3 − 1 . 4 2 5 3 − 9 . 5 4 6 9 1 2 . 1 2 8 6 − 5 . 1 7 0 3 9 . 8 2 7 5 3 . 3 5 6 5 3 . 6 7 5 8 − 1 . 8 8 9 3 − 0 . 8 1 5 5 − 1 . 5 8 2 7 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
− 1 . 2 2 9 4 ∗ R O W 5 + R O W 1
− 0 . 7 8 4 8 ∗ R O W 5 + R O W 2
0 . 8 1 7 5 ∗ R O W 5 + R O W 3
0 . 2 3 4 9 ∗ R O W 5 + R O W 4
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0 . 2 2 8 3 0 . 0 1 8 7 0 . 5 9 9 2 − 0 . 3 5 3 0 0 . 7 3 4 3 − 1 3 . 5 0 6 9 − 1 7 . 2 5 9 2 2 0 . 1 6 2 6 − 2 . 8 6 1 5 9 . 8 2 7 5 5 . 3 0 2 2 4 . 9 1 7 8 − 3 . 1 8 3 2 − 1 . 1 8 7 3 − 1 . 5 8 2 7 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
M = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 0 . 2 2 8 3 0 . 0 1 8 7 0 . 5 9 9 2 − 0 . 3 5 3 0 0 . 7 3 4 3 − 1 3 . 5 0 6 9 − 1 7 . 2 5 9 2 2 0 . 1 6 2 6 − 2 . 8 6 1 5 9 . 8 2 7 5 5 . 3 0 2 2 4 . 9 1 7 8 − 3 . 1 8 3 2 − 1 . 1 8 7 3 − 1 . 5 8 2 7 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
and ∑ i = 1 5 ∑ j = 1 3 a i j = 1 . 8 5 7 1 .
I extended the program(extension not shown above) to check matrix M above.
Let X = ⎣ ⎡ 1 2 3 ⎦ ⎤ ∈ R 3
Without using matrix M :
f ⎝ ⎛ 1 2 3 ⎠ ⎞ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 4 1 4 6 1 1 7 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
Using the set of basis vectors for B and f ( X ) we set up the system:
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 8 . 0 0 0 0 1 2 . 0 0 0 0 1 2 . 0 0 0 0 2 0 . 0 0 0 0 1 3 . 0 0 0 0 1 4 . 0 0 0 0 4 . 0 0 0 0 1 1 . 0 0 0 0 4 . 0 0 0 0 2 . 0 0 0 0 1 9 . 0 0 0 0 1 7 . 0 0 0 0 1 4 . 0 0 0 0 1 5 . 0 0 0 0 7 . 0 0 0 0 1 4 . 0 0 0 0 1 7 . 0 0 0 0 4 . 0 0 0 0 1 9 . 0 0 0 0 8 . 0 0 0 0 2 . 0 0 0 0 0 . 0 0 0 0 1 1 . 0 0 0 0 1 1 . 0 0 0 0 2 4 . 0 0 0 0 4 . 0 0 0 0 1 4 . 0 0 0 0 6 . 0 0 0 0 1 . 0 0 0 0 1 7 . 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
Solving the system we obtain:
[ f ( X ) ] B = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ − 2 . 1 1 5 5 − 3 . 1 9 5 8 4 . 0 3 4 1 − 0 . 9 6 5 4 1 . 2 6 5 7 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
Using matrix M :
Using the set of basis vectors for A and X we set up the system:
⎣ ⎡ 4 . 0 0 0 0 3 . 0 0 0 0 1 . 0 0 0 0 7 . 0 0 0 0 1 9 . 0 0 0 0 1 1 . 0 0 0 0 1 0 . 0 0 0 0 1 . 0 0 0 0 2 . 0 0 0 0 1 . 0 0 0 0 2 . 0 0 0 0 3 . 0 0 0 0 ⎦ ⎤
Solving the system we obtain:
[ X ] A = ⎣ ⎡ − 1 . 5 4 9 3 0 . 3 2 3 9 0 . 4 9 3 0 ⎦ ⎤
[ f ( X ) ] B = M ∗ [ X ] A = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 0 . 2 2 8 3 0 . 0 1 8 7 0 . 5 9 9 2 − 0 . 3 5 3 0 0 . 7 3 4 3 − 1 3 . 5 0 6 9 − 1 7 . 2 5 9 2 2 0 . 1 6 2 6 − 2 . 8 6 1 5 9 . 8 2 7 5 5 . 3 0 2 2 4 . 9 1 7 8 − 3 . 1 8 3 2 − 1 . 1 8 7 3 − 1 . 5 8 2 7 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ∗ ⎣ ⎡ − 1 . 5 4 9 3 0 . 3 2 3 9 0 . 4 9 3 0 ⎦ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ − 2 . 1 1 5 5 − 3 . 1 9 5 8 4 . 0 3 4 1 − 0 . 9 6 5 4 1 . 2 6 5 7 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤