An algebra problem by Rocco Dalto

Algebra Level pending

Let f : C 2 C 3 f: \mathbb C^2 \rightarrow \mathbb C^3 be linear transform defined by:

f ( z 1 z 2 ) = ( ( 1 2 i ) z 1 + ( 3 4 i ) z 2 ( 3 4 i ) z 1 + ( 5 + 2 i ) z 2 ( 11 3 i ) z 1 + ( 4 + 2 i ) z 2 ) f \left( \begin{array}{ccc} z_{1} \\ z_{2} \\ \end{array} \right) = \left( \begin{array}{ccc} (1 - 2i) * z_{1} + (3 - 4i) * z_{2}\\ (3 - 4i) * z_{1} + (5 + 2i) * z_{2} \\ (11 - 3i) * z_{1} + (4 + 2i) * z_{2} \end{array} \right) , where z 1 , z 2 C z_{1},z_{2} \in \mathbb C

and A = { ( 2 5 i 7 + 3 i ) , ( 10 6 i 3 + 4 i ) } A = \{ \left( \begin{array}{ccc} 2 - 5i \\ 7 + 3i \\ \end{array} \right), \left( \begin{array}{ccc} 10 - 6i \\ 3 + 4i \\ \end{array} \right) \} be basis for C 2 \mathbb C^2 and B = { ( 1 + 2 i 3 + 4 i 5 + 6 i ) , ( 7 + 10 i 2 6 i 1 + 2 i ) , ( 6 + 5 i 10 + 3 i 5 + i ) } B = \left \{ \left( \begin{array}{ccc} 1 + 2i\\ 3 + 4i \\ 5 + 6i \\ \end{array} \right), \left( \begin{array}{ccc} -7 + 10i \\ 2 - 6i \\ 1 + 2i\ \end{array} \right), \left( \begin{array}{ccc} -6 + 5i \\ 10 + 3i \\ 5 + i \ \end{array} \right) \right \} be a basis for C 3 . \mathbb C^3. .

If M = [ a j k + b j k i ] 3 x 2 M = [a_{jk} + b_{jk}i]_{3 \: x \: 2} represents the linear transform above and j = 1 3 k = 1 2 ( a j k + b j k i ) = α + β i \displaystyle \sum_{j = 1}^{3} \sum_{k = 1}^{2} (a_{jk} + b_{jk}i) = \alpha + \beta i , find α + β i = α 2 + β 2 \| \alpha + \beta i \| = \sqrt{\alpha^2 + \beta^2} .

Express the result to four decimal places.

General Case:

Let f : C n C m f: \mathbb C^n \rightarrow \mathbb C^m be linear transform defined by:

f ( z 1 z 2 . . . z n ) = ( c 11 z 1 + . . . + c 1 k z k + . . . + c 1 n z n c 21 z 1 + . . . + c 2 k z k + . . . + c 2 n z n . . . c j 1 z 1 + . . . + c j k z k + . . . + c j n z n . . . c m 1 z 1 + . . . + c m k z k + . . . + c m n z n ) f \left( \begin{array}{ccc} z_{1} \\ z_{2} \\ . \\ . \\ . \\ z_{n} \\ \end{array} \right) = \left( \begin{array}{ccc} c_{11} * z_{1} + ... + c_{1k} * z_{k}+ ... + c_{1n} * z_{n} \\ c_{21} * z_{1} + ... + c_{2k} * z_{k}+ ... + c_{2n} * z_{n} \\ . \\ . \\ . \\ c_{j1} * z_{1} + ... + c_{jk} * z_{k}+ ... + c_{jn} * z_{n} \\ . \\ . \\ . \\ c_{m1} * z_{1} + ... + c_{mk} * z_{k}+ ... + c_{mn} * z_{n} \end{array} \right) , where z k , c j k C z_{k}, c_{jk} \in \mathbb C for each ( 1 < = j < = m ) (1 <= j <= m) and ( 1 < = k < = n ) (1 <= k <= n) .

Let V j = ( v 1 j v 2 j . . . v n j ) C n V_{j} = \left( \begin{array}{ccc} v_{1j} \\ v_{2j} \\ . \\ . \\ . \\ v_{nj} \\ \end{array} \right) \in \mathbb C^n

and A = { V j ( 1 < = j < = n ) } A = \{ V_{j} | (1 <= j <= n) \} be a basis for C n \mathbb C^n .

Let W j = ( w 1 j w 2 j . . . w m j ) C m W_{j} = \left( \begin{array}{ccc} w_{1j} \\ w_{2j} \\ . \\ . \\ . \\ w_{mj} \\ \end{array} \right) \in \mathbb C^m

and B = { W j ( 1 < = j < = m ) } B = \{ W_{j} | (1 <= j <= m) \} be a basis for C m \mathbb C^m .

You can write a program in any language to find the matrix M = [ a j k + b j k i ] m x n M = [a_{jk} + b_{jk} i]_{m \: x \: n} representation of the general linear transform above and j = 1 m k = 1 n ( a j k + b j k i ) \| \sum_{j = 1}^{m} \sum_{k = 1}^{n} (a_{jk} + b_{jk}i) \| .

You can use the program written to find the matrix M = [ a j k + b j k i ] 3 x 2 M = [a_{jk} + b_{jk} i]_{3 \: x \: 2} that represents the linear transform above and output j = 1 3 k = 1 2 ( a j k + b j k i ) \| \sum_{j = 1}^{3} \sum_{k = 1}^{2} (a_{jk} + b_{jk} i) \| .


The answer is 8.2341.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 5, 2017

After doing the problem I supply the program I wrote for the general case which generated the output for this specific problem.

Since f : C 2 C 3 f: \mathbb C^2 \rightarrow \mathbb C^3 is a linear transform, for each integer j ( 1 < = j < = 2 ) j \ni (1 <= j <= 2)

f ( z 1 j z 2 j ) = α 1 j ( 1 + 2 i 3 + 4 i 5 + 6 i ) + α 2 j ( 7 + 10 i 2 6 i 1 + 2 i ) + α 3 j ( 6 + 5 i 10 + 3 i 5 + i ) f \left( \begin{array}{ccc} z_{1j} \\ z_{2j} \\ \end{array} \right) = \alpha_{1j} * \left( \begin{array}{ccc} 1 + 2i\\ 3 + 4i \\ 5 + 6i \\ \end{array} \right) + \alpha_{2j} * \left( \begin{array}{ccc} -7 + 10i \\ 2 - 6i \\ 1 + 2i\ \end{array} \right) + \alpha_{3j} * \left( \begin{array}{ccc} -6 + 5i \\ 10 + 3i \\ 5 + i \ \end{array} \right)

= [ 1 + 2 i 7 + 10 i 6 + 5 i 3 + 4 i 2 6 i 10 + 3 i 5 + 6 i 1 + 2 i 5 + i ] α 1 j α 2 j α 3 j = \begin{bmatrix}{1 + 2i} && {-7 + 10i} && {-6 + 5i} \\ {3 + 4i} && {2 - 6i} && {10 + 3i} \\ {5 + 6i} && {1 + 2i} && {5 + i} \end{bmatrix} * \begin{vmatrix}{\alpha_{1j}} \\{\alpha_{2j}} \\ {\alpha_{3j}} \end{vmatrix}

where α 1 j , α 2 j , α 3 j C \alpha_{1j}, \alpha_{2j}, \alpha_{3j} \in \mathbb C and f ( 2 5 i 7 + 3 i ) = ( 25 28 i 15 + 6 i 29 35 i ) f \left( \begin{array}{ccc} 2 - 5i \\ 7 + 3i \\ \end{array} \right) = \left( \begin{array}{ccc} 25 - 28i\\ 15 + 6i\\ 29 - 35i\\ \end{array} \right)

f ( 10 6 i 3 + 4 i ) = ( 23 26 i 13 32 i 96 74 i ) f \left( \begin{array}{ccc} 10 - 6i \\ 3 + 4i \\ \end{array} \right) = \left( \begin{array}{ccc} 23 - 26i\\ 13 - 32i\\ 96 - 74i\\ \end{array} \right)

Using the above we can set up the augmented matrix below to solve for the

two 3 X 3 systems of equations.

[ 1 + 2 i 7 + 10 i 6 + 5 i 25 28 i 23 26 i 3 + 4 i 2 6 i 10 + 3 i 15 + 6 i 13 32 i 5 + 6 i 1 + 2 i 5 + i 29 35 i 96 74 i ] \left[ \begin{array}{ccc|cc} 1+ 2i & -7 + 10i & -6 + 5i & 25 - 28i & 23 - 26i \\ 3 + 4i & 2 - 6i & 10 + 3i & 15 + 6i & 13 - 32i \\ 5 + 6i & 1 + 2i & 5 + i & 29 - 35i & 96 - 74i \\ \ \end{array} \right]

( 0.2000 0.4000 i ) R O W 1 (0.2000 - 0.4000i) * ROW_{1}

[ 1.0000 + 0.0000 i 2.6000 + 4.8000 i 0.8000 + 3.4000 i 6.2000 15.6000 i 5.8000 14.4000 i 3.0000 + 4.0000 i 2.0000 6.0000 i 10.0000 + 3.0000 i 15.0000 + 6.0000 i 13.0000 32.0000 i 5.0000 + 6.0000 i 1.0000 + 2.0000 i 5.0000 + 1.0000 i 29.0000 35.0000 i 96.0000 74.0000 i ] \left[ \begin{array}{ccc|cc} 1.0000 + 0.0000i & 2.6000 + 4.8000i & 0.8000 + 3.4000i & -6.2000 - 15.6000i & -5.8000 - 14.4000i \\ 3.0000 + 4.0000i & 2.0000 - 6.0000i & 10.0000 + 3.0000i & 15.0000 + 6.0000i & 13.0000 - 32.0000i \\ 5.0000 + 6.0000i & 1.0000 + 2.0000i & 5.0000 + 1.0000i & 29.0000 - 35.0000i & 96.0000 - 74.0000i \\ \ \end{array} \right]

( 3.0000 4.0000 i ) R O W 1 + R O W 2 (-3.0000 - 4.0000i ) * ROW_{1} + ROW_{2}

( 5.0000 6.0000 i ) R O W 1 + R O W 3 (-5.0000 - 6.0000i ) * ROW_{1} + ROW_{3}

[ 1.0000 + 0.0000 i 2.6000 + 4.8000 i 0.8000 + 3.4000 i 6.2000 15.6000 i 5.8000 14.4000 i 0.0000 + 0.0000 i 13.4000 30.8000 i 21.2000 10.4000 i 28.8000 + 77.6000 i 27.2000 + 34.4000 i 0.0000 + i 0.0000 16.8000 37.6000 i 21.4000 20.8000 i 33.6000 + 80.2000 i 38.6000 + 32.8000 i ] \left[ \begin{array}{ccc|cc} 1.0000 + 0.0000i & 2.6000 + 4.8000i & 0.8000 + 3.4000i & -6.2000 - 15.6000i & -5.8000 - 14.4000i \\ 0.0000 + 0.0000i & 13.4000 - 30.8000i & 21.2000 -10.4000i & -28.8000 + 77.6000i & -27.2000 + 34.4000i \\ 0.0000 + i 0.0000 & 16.8000 - 37.6000i & 21.4000 - 20.8000i & -33.6000 + 80.2000i & 38.6000 + 32.8000i \\ \ \end{array} \right]

( 0.0119 + 0.0273 i ) R O W 2 (0.0119 + 0.0273i) * ROW_{2}

[ 1.0000 + 0.0000 i 2.6000 + 4.8000 i 0.8000 + 3.4000 i 6.2000 15.6000 i 5.8000 14.4000 i 0.0000 + 0.0000 i 1.0000 + 0.0000 i 0.5357 + 0.4552 i 2.4606 + 0.1354 i 1.2622 0.3340 i 0.0000 + 0.0000 i 16.8000 37.6000 i 21.4000 20.8000 i 33.6000 + 80.2000 i 38.6000 + i 32.8000 i ] \left[ \begin{array}{ccc|cc} 1.0000 + 0.0000i & 2.6000 + 4.8000i & 0.8000 + 3.4000i & -6.2000 - 15.6000i & -5.8000 - 14.4000i \\ 0.0000 + 0.0000i & 1.0000 + 0.0000i & 0.5357 + 0.4552i & -2.4606 + 0.1354i & -1.2622 - 0.3340i \\ 0.0000 + 0.0000i & 16.8000 - 37.6000i & 21.4000 - 20.8000i & -33.6000 + 80.2000i & 38.6000 + i32.8000i \\ \ \end{array} \right]

( 2.6000 4.8000 i ) R O W 2 + R O W 1 (-2.6000 - 4.8000i ) * ROW_{2} + ROW_{1}

( 16.8000 + 37.6000 i ) R O W 2 + R O W 3 (-16.8000 + 37.6000i ) * ROW_{2} + ROW_{3}

[ 1.0000 + 0.0000 i 0.0000 + 0.0000 i 1.5923 0.3551 i 0.8475 4.1415 i 4.1214 7.4731 i 0.0000 + 0.0000 i 1.0000 + 0.0000 i 0.5357 + 0.4552 i 2.4606 + 0.1354 i 1.2622 0.3340 i 0.0000 + 0.0000 i 0.0000 + 0.0000 i 4.7171 8.3049 i 2.6449 14.5923 i 72.3625 9.0473 i ] \left[ \begin{array}{ccc|cc} 1.0000 + 0.0000i & 0.0000 + 0.0000i & 1.5923 - 0.3551i & 0.8475 - 4.1415i & -4.1214 - 7.4731i \\ 0.0000 + 0.0000i & 1.0000 + 0.0000i & 0.5357 + 0.4552i & -2.4606 + 0.1354i & -1.2622 - 0.3340i \\ 0.0000 + 0.0000i & 0.0000 + 0.0000i & -4.7171 - 8.3049i & 2.6449 - 14.5923i & 72.3625 - 9.0473i \\ \ \end{array} \right]

( 0.0517 + 0.0910 i ) R O W 3 (-0.0517 + 0.0910i) * ROW_{3}

[ 1.0000 + 0.0000 i 0.0000 + 0.0000 i 1.5923 0.3551 i 0.8475 4.1415 i 4.1214 7.4731 i 0.0000 + 0.0000 i 1.0000 + 0.0000 i 0.5357 + 0.4552 i 2.4606 + 0.1354 i 1.2622 0.3340 i 0.0000 + 0.0000 i 0.0000 + 0.0000 i 1.0000 + 0.0000 i 1.1917 + 0.9954 i 2.9182 + 7.0557 i ] \left[ \begin{array}{ccc|cc} 1.0000 + 0.0000i & 0.0000 + 0.0000i & 1.5923 - 0.3551i & 0.8475 - 4.1415i & -4.1214 - 7.4731i \\ 0.0000 + 0.0000i & 1.0000 + 0.0000i & 0.5357 + 0.4552i & -2.4606 + 0.1354i & -1.2622 - 0.3340i \\ 0.0000 + 0.0000i & 0.0000 + 0.0000i & 1.0000 + 0.0000i & 1.1917 + 0.9954i & -2.9182 + 7.0557i \\ \ \end{array} \right]

( 1.5923 + 0.3551 i ) R O W 3 + R O W 1 (-1.5923 + 0.3551i ) * ROW_{3} + ROW_{1}

( 0.5357 0.4552 i ) R O W 3 + R O W 2 (-0.5357 - 0.4552i ) * ROW_{3} + ROW_{2}

[ 1.0000 + 0.0000 i 0.0000 + 0.0000 i 0.0000 + 0.0000 i 1.4034 5.3032 i 1.9803 19.7440 i 0.0000 + 0.0000 i 1.0000 + 0.0000 i 0.0000 + 0.0000 i 2.6459 0.9403 i 3.5132 2.7854 i 0.0000 + 0.0000 i 0.0000 + 0.0000 i 1.0000 + 0.0000 i 1.1917 + 0.9954 i 2.9182 + 7.0557 i ] \left[ \begin{array}{ccc|cc} 1.0000 + 0.0000i & 0.0000 + 0.0000i & 0.0000 + 0.0000i & -1.4034 - 5.3032i & -1.9803 - 19.7440i \\ 0.0000 + 0.0000i & 1.0000 + 0.0000i & 0.0000 + 0.0000i & -2.6459 - 0.9403i & 3.5132 - 2.7854i \\ 0.0000 + 0.0000i & 0.0000 + 0.0000i & 1.0000 + 0.0000i & 1.1917 + 0.9954i & -2.9182 + 7.0557i \\ \ \end{array} \right]

\implies

M = [ 1.4034 5.3032 i 1.9803 19.7440 i 2.6459 0.9403 i 3.5132 2.7854 i 1.1917 + 0.9954 i 2.9182 + 7.0557 i ] M = \begin{bmatrix}{-1.4034 - 5.3032i } && {-1.9803 - 19.7440i} \\ {-2.6459 - 0.9403i} && {3.5132 - 2.7854i }\\ {1.1917 + 0.9954i} && {-2.9182 + 7.0557i } \end{bmatrix}

and,

j = 1 3 k = 1 2 ( a j k + b j k i ) = 1.7265 + 8.0511 i = α + β i \displaystyle \sum_{j = 1}^{3} \sum_{k = 1}^{2} (a_{jk} + b_{jk}i) = -1.7265 + 8.0511i = \alpha + \beta i

\implies

α + β i = α 2 + β 2 = 8.2341 \| \alpha + \beta i \| = \sqrt{\alpha^2 + \beta^2} = \boxed{8.2341} .

...

I wrote the program in Free Pascal.

program matrixrepresentaionoflineartransform_complex;

{restricted to f:Cn --> Cm}

uses crt;

                                {self contained for brillant}

const maxnum = 100;

type matrix = array[1 .. maxnum,1 .. maxnum] of real;

var coeffa,coeffb,reb,imgb,rea,imga,resol,imgsol:matrix;

n,m,l,p,v:integer;

mywork:text;

function power(base:real; exponent:integer):real;

var n:integer;

product:real;

begin

product:= 1;

for n:= 1 to exponent do

product:= product * base;

power:= product;

end;

procedure getsize;

begin

writeln('Let f:Cn ---> Cm be linear transform ');

writeln('Enter n for Cn');

readln(n);

writeln('Enter m for Cm');

readln(m);

end;

procedure getcoefficients;

var j,k:integer;

begin

for j:= 1 to m do

begin

writeln('For row,', j, ', enter each coefficient of Zj for Cm');

for k:= 1 to n do

begin

read(coeffa[j,k]);

read(coeffb[j,k]);

end;

end;

end;

procedure complexinverse(var reinvz,imginvz:real; rez,imgz:real);

var lengthsqr:real;

begin

lengthsqr:= power(rez,2) + power(imgz,2);

reinvz:= rez/lengthsqr;

imginvz:= -imgz/lengthsqr;

end;

function reproduct(rez1,imgz1,rez2,imgz2:real):real;

begin

reproduct:= rez1 * rez2 - imgz1 * imgz2;

end;

function imgproduct(rez1,imgz1,rez2,imgz2:real):real;

begin

imgproduct:= rez2 * imgz1 + rez1 * imgz2;

end;

procedure getaugmentedmatrix;

var j,k,q,r,s:integer;

revec,imgvec:matrix;

resum,imgsum:real;

myfile:text;

begin

assign(myfile,'holdcmatrix.txt');

rewrite(myfile);

writeln('To Enter ', n, ' basis vectors for Cn: ');

for q:= 1 to n do

begin

write('Enter elements of vector ', q, ' : ');

for k:= 1 to n do

begin

read(reb[k,q]);

read(imgb[k,q]);

end;

for j:= 1 to m do

begin

resum:= 0;

imgsum:= 0;

for k:= 1 to n do

begin

resum:= resum + reproduct(coeffa[j,k],coeffb[j,k],reb[k,q],imgb[k,q]);

imgsum:= imgsum + imgproduct(coeffa[j,k],coeffb[j,k],reb[k,q],imgb[k,q]);

end;

revec[j,q]:= resum;

imgvec[j,q]:= imgsum;

end;

end;

writeln('To Enter ', m, ' basis vectors for Cm: ');

for q:= 1 to m do

begin

write('Enter elements of vector ', q, ' : ');

for k:= 1 to m do

begin

read(rea[k,q]);

read(imga[k,q]);

end;

end;

for q:= 1 to m do

begin

for k:= 1 to m do

begin

write(myfile,rea[q,k]:0:4,' ',imga[q,k],' ');

end;

for r:= 1 to n do

begin

write(myfile,revec[q,r]:0:4,' ',imgvec[q,r],' ');

end;

writeln(myfile);

end;

reset(myfile);

for j:= 1 to m do

begin

for k:= 1 to m + n do

begin

read(myfile,rea[j,k]);

read(myfile,imga[j,k]);

end;

end;

close(myfile);

{To show augmented matrix - for show work}

writeln(mywork,' Augmented Matrix');

writeln(mywork);

for q:= 1 to m do

begin

for k:= 1 to m do

begin

write(mywork,rea[q,k]:0:4,' + i', imga[q,k]:0:4,' ');

end;

for r:= 1 to n do

begin

write(mywork,revec[q,r]:0:4,' + i', imgvec[q,r]:0:4,' ');

end;

writeln(mywork);

end;

writeln(mywork);

writeln(mywork);

end;

procedure switch(var c,d:matrix; l,p:integer);

var q:integer;

z,w:real;

begin{switch}

for q:= 1 to m + n do

begin{m}

   z:= c[l,q];

   c[l,q]:= c[p,q];

   c[p,q]:= z;

   w:= d[l,q];

   d[l,q]:= d[p,q];

   d[p,q]:= w;

end;{m}

end;{switch}

procedure safeguard(var c,d:matrix; l:integer; var p:integer; var v:integer);

var q:integer;

begin{safeguard}

v:=0;

if (c[l,l] = 0) and (d[l,l] = 0) then

begin{then}

v:= 1;

q:= l;

while ((q + 1) <= n + m) and (v = 1) do

begin{loop}

if (c[q + 1,l] <> 0) or (d[q + 1,l] <> 0) then

begin{then}

        p:= q + 1;

        switch(c,d,l,p);

        v:= 0;

end;{then}

q:= q + 1;

end;{loop}

end;{then}

end;{safeguard}

procedure operation1(var a,b:matrix; l:integer);

var q,k:integer;

res,imgs:matrix;

reinvz,imginvz:real;

begin{op1}

for q:= 1 to m + n do

begin{q}

complexinverse(reinvz,imginvz,a[l,l],b[l,l]);

res[l,q]:= reproduct(a[l,q],b[l,q],reinvz,imginvz);

imgs[l,q]:= imgproduct(a[l,q],b[l,q],reinvz,imginvz);

end;{q}

for q:= 1 to m + n do

begin{q}

a[l,q]:= res[l,q];

b[l,q]:= imgs[l,q];

end;{q}

writeln(mywork,'(',reinvz:0:4,' + i', imginvz:0:4,') * ROW ', l);

writeln(mywork);

writeln(mywork);

for q:= 1 to m do

begin

for k:= 1 to m + n do

begin

write(mywork,a[q,k]:0:4,' + i', b[q,k]:0:4,' ');

end;

writeln(mywork);

end;

writeln(mywork);

writeln(mywork);

end;{op1}

procedure operation2(var a,b:matrix; l:integer);

var q,r,k:integer;

x,y:real;

res,imgs:matrix;

begin{op2}

for q:= 1 to m do

begin{q}

if q <> l then

begin{then}

x:= -1 * a[q,l];

y:= -1 * b[q,l];

for r:= 1 to m + n do

begin{r}

res[q,r]:= reproduct(x,y,a[l,r],b[l,r]) + a[q,r];

imgs[q,r]:= imgproduct(x,y,a[l,r],b[l,r]) + b[q,r];

end;{r}

writeln(mywork,'(',x:0:4, ' + i',y:0:4,' ) * ROW ', l,' + ROW ', q);

for r:= 1 to m + n do

begin{r}

a[q,r]:= res[q,r];

b[q,r]:= imgs[q,r];

end;{r}

end;{then}

end;{q}

writeln(mywork);

for q:= 1 to m do

begin

for k:= 1 to m + n do

begin

write(mywork,a[q,k]:0:4,' + i ',b[q,k]:0:4,' ');

end;

writeln(mywork);

end;

writeln(mywork);

writeln(mywork);

end;{op2}

PROCEDURE SHOWDATA;

VAR J,k:INTEGER;

resum,imgsum:extended;

myfile2:text;

BEGIN

assign(myfile2,'holdsolution6.txt');

rewrite(myfile2);

writeln;

writeln('Matrix Representation of linear transformation f: Cn ---> Cm:');

writeln('-------------------------------------------------------------');

writeln;

for j:= 1 to m do

begin

for k:= m + 1 to m + n do

begin

write(myfile2,rea[j,k]:0:4,' ',imga[j,k],' ');

end;

writeln(myfile2);

end;

reset(myfile2);

for j:= 1 to m do

begin

for k:= 1 to n do

begin read(myfile2,resol[j,k]);

read(myfile2,imgsol[j,k]);

end;

end;

close(myfile2);

for j:= 1 to m do

begin

for k:= 1 to n do

begin

write(resol[j,k]:0:4,' + i', imgsol[j,k]:0:4,' ');

end;

writeln;

end;

{For brillant only.}

for j:= 1 to m do

begin

resum:= 0;

imgsum:= 0;

for k:= 1 to n do

begin

resum:= resum + resol[j,k];

imgsum:= imgsum + imgsol[j,k];

end;

end;

writeln(mywork);

writeln(mywork);

writeln(mywork, 'Sum = ',resum:0:4,' + i', imgsum:0:4);

writeln(mywork, '|Sum| = ',sqrt(power(resum,2) + power(imgsum,2)):0:4);

writeln;

writeln;

writeln('Sum = ',resum:0:4,' + i', imgsum:0:4);

writeln('|Sum| = ',sqrt(power(resum,2) + power(imgsum,2)):0:4);

END;

begin

assign(mywork,'cmywork.txt');

rewrite(mywork);

getsize;

getcoefficients;

getaugmentedmatrix;

for l:= 1 to m do

begin{l}

safeguard(rea,imga,l,p,v);

if v = 0 then

begin{then}

operation1(rea,imga,l);

operation2(rea,imga,l);

end;{then}

end;{l}

showdata;

close(mywork);

readln;

readln;

end.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...