A calculus problem by Rocco Dalto

Calculus Level pending

{ d x d t = 3 x + y 2 z d y d t = x + y d z d t = x + z \begin{cases} \dfrac{dx}{dt} = 3x + y - 2z \\ \dfrac{dy}{dt} = x + y \\ \dfrac{dz}{dt} = x + z \end{cases}

The general solution to the above differential system is as follows:

{ x ( t ) = c 1 x 1 ( t ) + c 2 x 2 ( t ) + c 3 x 3 ( t ) y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) z ( t ) = c 1 z 1 ( t ) + c 2 z 2 ( t ) + c 3 z 3 ( t ) \begin{cases} x(t) = c_{1}x_{1}(t) + c_{2}x_{2}(t) + c_{3}x_{3}(t) \\ y(t) = c_{1}y_{1}(t) + c_{2} y_{2}(t) + c_{3}y_{3}(t) \\ z(t) = c_{1}z_{1}(t) + c_{2}z_{2}(t) + c_{3}z_{3}(t) \end{cases} where x j ( t ) y j ( t ) z j ( t ) = A j B j C j e λ j t \begin{vmatrix}{x_{j}(t)} \\{y_{j}(t)} \\ {z_{j}(t)} \\ \end{vmatrix} = \begin{vmatrix}{A_{j}} \\{B_{j}} \\ {C_{j}} \\ \end{vmatrix} * e^{\lambda_{j} t}

for ( 1 < = j < = 2 ) (1 <= j <= 2) , and x 3 ( t ) y 3 ( t ) z 3 ( t ) = A 3 + A 2 t B 3 + B 2 t C 3 + C 2 t e λ 2 t \begin{vmatrix}{x_{3}(t)} \\{y_{3}(t)} \\ {z_{3}(t)} \\ \end{vmatrix} = \begin{vmatrix}{A_{3} + A_{2} * t} \\{B_{3} + B_{2} * t}\\ {C_{3} + C_{2} * t} \\ \end{vmatrix} * e^{\lambda_{2}t }

If C 1 = 1 , C 2 = 1 , A 3 = 2 C_{1} = 1, \: C_{2} = 1, \: A_{3} = 2 and x ( 0 ) = 0 x(0) = 0 , y ( 0 ) = 2 y(0) = 2 , and z ( 0 ) = 3 z(0) = 3 . Find c 1 + c 2 + c 3 c_{1} + c_{2} + c_{3} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 18, 2017

Let x ( t ) = A e λ t x(t) = A * e^{\lambda t} y ( t ) = B e λ t y(t) = B * e^{\lambda t} z ( t ) = C e λ t z(t) = C * e^{\lambda t}

d x d t = λ A e λ t , d y d t = λ B e λ t , d x d t = λ C e λ t \implies \dfrac{dx}{dt} = \lambda * A * e^{\lambda t}, \: \dfrac{dy}{dt} = \lambda * B * e^{\lambda t}, \: \dfrac{dx}{dt} = \lambda * C * e^{\lambda t}

Replacing the above in the differential system we obtain the system:

[ 3 λ 1 2 1 1 λ 0 1 0 1 λ ] A B C = 0 0 0 \begin{bmatrix}{3 - \lambda} && {1} && {-2}\\ {1} && {1 - \lambda} && {0}\\ {1} && {0} && {1 - \lambda} \end{bmatrix} * \begin{vmatrix}{A} \\{B} \\ {C} \\ \end{vmatrix} = \begin{vmatrix}{0} \\{0} \\ {0} \\ \end{vmatrix}

We want a nontrivial solution so let det ( [ 3 λ 1 2 1 1 λ 0 1 0 1 λ ] ) = 0 \det(\begin{bmatrix}{3 - \lambda} && {1} && {-2}\\ {1} && {1 - \lambda} && {0}\\ {1} && {0} && {1 - \lambda} \end{bmatrix}) = 0

λ 3 5 λ 2 + 8 λ 4 = 0 \implies \lambda^3 - 5 \lambda^2 + 8 \lambda - 4 = 0 \implies

( λ 1 ) ( λ 2 ) 2 = 0 λ = 1 , λ = 2 (\lambda - 1) * (\lambda - 2)^2 = 0 \implies \lambda = 1, \: \lambda = 2

For λ = 1 \lambda = 1 we obtain the system:

[ 2 1 2 0 1 0 0 0 1 0 0 0 ] \left[ \begin{array}{ccc|c} 2 & 1 & -2 & 0\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 \\ \ \end{array} \right]

\implies

A 1 = 0 A_{1} = 0

B 1 2 C 1 = 0 B_{1} - 2 C_{1} = 0

Letting C 1 = 1 B 1 = 1 C_{1} = 1 \implies B_{1} = 1 \implies

x 1 ( t ) = 0 x_{1}(t) = 0 y 1 ( t ) = 2 e t y_{1}(t) = 2 e^{t} z 1 ( t ) = e t z_{1}(t) = e^{t}

For λ = 2 \lambda = 2 we obtain the system:

[ 1 1 2 0 1 1 0 0 1 0 1 0 ] \left[ \begin{array}{ccc|c} 1 & 1 & -2 & 0\\ 1 & -1 & 0 & 0\\ 1 & 0 & -1 & 0 \\ \ \end{array} \right]

Let A 2 = B 2 A 2 C 2 = 0 A_{2} = B_{2} \implies A_{2} - C_{2} = 0

Letting C 2 = 1 A 2 = 1 B 2 = 1 C _{2}= 1 \implies A_{2} = 1 \implies B_{2} = 1

x 2 ( t ) = e 2 t x_{2}(t) = e^{2t} y 2 ( t ) = e 2 t y_{2}(t) = e^{2t} z 2 ( t ) = e 2 t z_{2}(t) = e^{2t}

Replacing x 3 ( t ) y 3 ( t ) z 3 ( t ) = A 3 + 2 t B 3 + 2 t C 3 + 2 t e λ 2 t \begin{vmatrix}{x_{3}(t)} \\{y_{3}(t)} \\ {z_{3}(t)} \\ \end{vmatrix} = \begin{vmatrix}{A_{3} + 2 * t} \\{B_{3} + 2 * t}\\ {C_{3} + 2 * t} \\ \end{vmatrix} * e^{\lambda_{2}t } into the differential system we obtain:

[ 1 1 2 1 1 0 1 0 1 ] A 3 B 3 C 3 = 1 1 1 \begin{bmatrix}{1} && {1} && {-2}\\ {1} && {-1} && {0}\\ {1} && {0} && {-1} \end{bmatrix} * \begin{vmatrix}{A_{3}} \\{B_{3}} \\ {C_{3}} \\ \end{vmatrix} = \begin{vmatrix}{1} \\{1} \\ {1} \\ \end{vmatrix}

\implies

B 3 = A 3 1 A 3 C 3 = 1 B_{3} = A_{3} - 1 \implies A_{3} - C_{3} = 1

Letting A 3 = 2 C 3 = 1 B 3 = 1 A_{3} = 2 \implies C_{3} = 1 \implies B_{3} = 1

x 3 ( t ) = 2 e 2 t x_{3}(t) = 2 e^{2t} y 3 ( t ) = e 2 t y_{3}(t) = e^{2t} z 3 ( t ) = e 2 t z_{3}(t) = e^{2t}

\therefore The general solution is:

{ x ( t ) = c 2 e 2 t + c 3 ( 2 + t ) e 2 t y ( t ) = 2 c 1 e t + c 2 e 2 t + c 3 ( 1 + t ) e 2 t z ( t ) = c 1 e t + c 2 e 2 t + c 3 ( 1 + t ) e 2 t \begin{cases} x(t) = c_{2} e^{2t} + c_{3} (2 + t) e^{2t} \\ y(t) = 2 c_{1} e^{t} + c_{2} e^{2t} + c_{3} (1 + t) e^{2t} \\ z(t) = c_{1} e^{t} + c_{2} e^{2t} + c_{3} (1 + t) e^{2t} \end{cases}

Let x ( 0 ) = 0 x(0) = 0 , y ( 0 ) = 2 y(0) = 2 , and z ( 0 ) = 3 z(0) = 3 \implies

c 2 + 2 c 3 = 0 c_{2} + 2 c_{3} = 0 2 c 1 + c 2 + c 3 = 2 2 c_{1} + c_{2} + c_{3} = 2 c 1 + c 2 + c 3 = 3 c_{1} + c_{2} + c_{3} = 3

Let c 2 = 2 c 3 c_{2} = -2 c_{3} \implies 2 c 1 c 3 = 2 2 c_{1} - c_{3} = 2 c 1 c 3 = 3 c_{1} - c_{3} = 3

c 1 = 1 c 3 = 4 c 2 = 8 c 1 + c 2 + c 3 = 3 \implies c_{1} = -1 \implies c_{3} = -4 \implies c_{2} = 8 \implies c_{1} + c_{2} + c_{3} = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...