What Two Numbers Adds Up To 75?

Geometry Level 2

tan ( 7 5 ) + cot ( 7 5 ) = ? \large \tan( 75^\circ) + \cot(75^\circ) = \ ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

tan ( 7 5 ) + cot ( 7 5 ) = tan ( 7 5 ) + 1 tan ( 7 5 ) = tan 2 ( 7 5 ) + 1 tan ( 7 5 ) = sec 2 ( 7 5 ) tan ( 7 5 ) = cos ( 7 5 ) sin ( 7 5 ) × cos 2 ( 7 5 ) = 1 sin ( 7 5 ) × cos ( 7 5 ) = 2 2 × sin ( 7 5 ) × cos ( 7 5 ) = 2 sin 2 ( 7 5 ) = 2 sin ( 15 0 ) = 2 sin ( 90 + 60 ) = 2 cos 6 0 = 2 1 2 = 2 × 2 = 4 . \large \displaystyle \begin{aligned} \tan (75^{\circ}) + \cot (75^{\circ}) &= \tan (75^{\circ}) + \frac{1}{\tan (75^{\circ})}\\ \large \displaystyle &= \frac{\tan ^2 (75^{\circ}) + 1}{\tan (75^{\circ})}\\ \large \displaystyle &= \frac{\sec^2 (75^{\circ})}{\tan (75^{\circ})}\\ \large \displaystyle &= \frac{\cos (75^{\circ})}{\sin (75^{\circ}) \times \cos^2 (75^{\circ})}\\ \large \displaystyle &= \frac{1}{\sin (75^{\circ}) \times \cos (75^{\circ})}\\ \large \displaystyle &= \frac{2}{2 \times \sin (75^{\circ}) \times \cos (75^{\circ})} \\ \large \displaystyle &= \frac{2}{\sin 2(75^{\circ})} \\ \large \displaystyle &= \frac{2}{\sin (150^{\circ})} = \frac{2}{\sin (90+60)}\\ \large \displaystyle &= \frac{2}{\cos 60^{\circ}} = \frac{2}{\frac{1}{2}} = 2 \times 2 = \color{#3D99F6}{\boxed{4}} \end{aligned}.

\, \, Formula Used : sin ( 2 θ ) = 2 × sin θ × cos θ tan 2 θ + 1 = sec 2 θ tan θ = 1 cot θ \large \displaystyle \begin{aligned} \text{Formula Used : } & \sin (2 \theta) = 2 \times \sin \theta \times \cos \theta\\ \large \displaystyle & \tan ^2 \theta + 1 = \sec ^2 \theta\\ \large \displaystyle & \tan \theta = \frac{1}{\cot \theta} \end{aligned}

Simple and sweet :)

Murugesh M - 5 years ago

Log in to reply

Thanks! ¨ \ddot\smile

Samara Simha Reddy - 5 years ago
Hung Woei Neoh
May 18, 2016

tan 7 5 + cot 7 5 = sin 7 5 cos 7 5 + cos 7 5 sin 7 5 = sin 2 7 5 + cos 2 7 5 sin 7 5 cos 7 5 = 1 sin 7 5 cos 7 5 = 2 2 sin 7 5 cos 7 5 = 2 sin 15 0 = 2 sin 3 0 = 2 ( 1 2 ) = 4 \tan 75^{\circ} + \cot 75^{\circ}\\ =\dfrac{\sin 75^{\circ}}{\cos75^{\circ}} + \dfrac{\cos 75^{\circ}}{\sin 75^{\circ}}\\ =\dfrac{\sin^2 75^{\circ} + \cos^2 75^{\circ}}{\sin 75^{\circ} \cos 75^{\circ}}\\ =\dfrac{1}{\sin 75^{\circ} \cos 75^{\circ}}\\ =\dfrac{2}{2 \sin 75^{\circ}\cos 75^{\circ}}\\ =\dfrac{2}{\sin 150^{\circ}}\\ =\dfrac{2}{\sin 30^{\circ}}\\ =\dfrac{2}{\left(\frac{1}{2}\right)}\\ =\boxed{4}

Michael Fuller
May 29, 2016

tan ( 7 5 ) + cot ( 7 5 ) \tan (75^{\circ}) + \cot (75^{\circ})

= tan ( 7 5 ) + tan ( 1 5 ) = \tan (75^{\circ}) + \tan (15^{\circ})

= tan ( 4 5 + 3 0 ) + tan ( 4 5 3 0 ) = \tan (45^{\circ} + 30^{\circ}) + \tan (45^{\circ} - 30^{\circ})

= tan ( 4 5 ) + tan ( 3 0 ) 1 tan ( 4 5 ) tan ( 3 0 ) + tan ( 4 5 ) tan ( 3 0 ) 1 + tan ( 4 5 ) tan ( 3 0 ) = \frac{ \tan (45^{\circ}) + \tan (30^{\circ}) }{ 1 - \tan (45^{\circ}) \tan (30^{\circ}) } + \frac{\tan (45^{\circ})-\tan (30^{\circ})}{1+\tan (45^{\circ})\tan (30^{\circ}) }

= 1 + 3 / 3 1 3 / 3 + 1 3 / 3 1 + 3 / 3 = \frac{ 1+{\sqrt{3}}/{3} }{ 1-{\sqrt{3}}/{3} } + \frac{ 1-{\sqrt{3}}/{3} }{ 1+{\sqrt{3}}/{3} }

= 4 = \large \color{#20A900}{\boxed{4}}

Rishi K
May 27, 2016

Heres my method. tan ( 7 5 ) + cot ( 7 5 ) \tan(75^\circ) + \cot(75^\circ)

Converting and writing in terms of sin \sin and cos \cos we get sin ( 7 5 ) cos ( 7 5 ) + cos ( 75 ) sin ( 75 ) \frac{\sin(75 ^\circ )}{\cos(75 ^\circ )} +\frac{\cos(75)}{\sin(75)} . Using the property sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta =1 , we get 1 ( sin 7 5 cos 7 5 ) ( 1 ) \frac{1}{(\sin 75 ^\circ \cos 75 ^\circ )} (1)

Now we make use of property sin 2 θ = 2 sin θ cos θ \sin 2 \theta = 2 \sin \theta \cos \theta . Multiplying and dividing equation 1 1 by 2 2 we get 2 2 × ( sin 7 5 cos 7 5 ) \frac{2}{2 \times (\sin 75 ^\circ \cos 75 ^\circ )} .

Using the above stated property we get 2 sin 15 0 \frac{2}{\sin 150 ^\circ } . Now sin 15 0 \sin 150 ^\circ can be written as sin ( 18 0 3 0 ) \sin(180 ^\circ -30 ^\circ ) . We know by trigonometry that sin ( 18 0 θ ) = sin θ \sin(180 ^\circ - \theta)=\sin \theta . Therefore we get 2 sin 3 0 \frac{2}{\sin 30 ^\circ } .

We know that sin 3 0 = 1 2 \sin 30 ^\circ = \frac{1}{2} . Therefore the answer is 2 × 2 = 4 2 \times 2=4

Sorry it was little informal. I'm new to posting solutions.

Thanks for writing the solution, Rishi. I have edited the Latex so your solution is easier to read. You can learn more about using Latex here .

I would request that you use complete words like "and" instead of "n" and "the" instead of "d". It looks much better and is worth the effort. Thanks.

Pranshu Gaba - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...