A problem by Nazmus Sakib

Algebra Level 1

True or False:

24 + 2 121 12 + 121 Z \frac{24 + 2 \sqrt{121}}{12 + \sqrt{121}} \in \mathbb{Z}

Note: By breaking , \sqrt, if you want to change the sign then the sign of the numerator and denominator should be the same. e.g a + b 2 c + d 2 = a + b c + d \dfrac{a+\sqrt{b^2}}{c+\sqrt{d^2}} = \dfrac{a+b}{c+d} or a b c d \dfrac{a-b}{c-d}

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nazmus Sakib
Sep 14, 2017

24 + 2 121 12 + 121 \dfrac{24 + 2 \sqrt{121}}{12 + \sqrt{121}}

= 24 + 22 12 + 11 \dfrac{24+22}{12+11} ;(with plus sign)

= 2 \large{2} ( integer)

or, 24 22 12 11 \dfrac{24-22}{12-11} ;(with minus sign)

= 2 2 ( integer)

Mohammad Khaza
Sep 21, 2017

24 + 2 121 12 + 121 \frac{24+2\sqrt{121}}{12+\sqrt{121}}

= 24 + 2 × 11 12 + 11 \frac{24+ 2 \times 11}{12+11}

= 46 23 \frac{46}{23}

= 2 2 Z ∈ Z

Chew-Seong Cheong
Sep 15, 2017

24 + 2 121 12 + 121 = 2 ( 12 + 121 ) 12 + 121 = 2 \dfrac {24+2\sqrt{121}}{12+\sqrt{121}} = \dfrac {2(12+\sqrt{121})}{12+\sqrt{121}} = \boxed{2}

Sumukh Bansal
Nov 26, 2017

24 + 2 121 12 + 121 \dfrac{24+2\sqrt{121}}{12+\sqrt{121}} 2 ( 12 + 121 ) 1 ( 12 + 121 ) \Rightarrow \dfrac{2(12+\sqrt{121})}{1(12+\sqrt{121})} 2 \Rightarrow 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...