An algebra problem by Saksham Jain

Algebra Level 2

Let A A denote the sum of an infinite geometric progression, 1 2 3 + 1 2 6 + 1 2 9 + \dfrac1{2^3} + \dfrac1{2^6} + \dfrac1{2^9} + \cdots .

Let B = log 128 2 B = \log_{128}2 , compute B log A 4 \Large B^{\log_A 4 } .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Jan 5, 2016

= ( log 128 2 ) log 1 2 3 + 1 2 6 + 1 2 9 + 4 = ( 1 7 log 2 2 ) log ( 1 2 3 1 1 2 3 ) 4 We know, a log a b = b ( 1 7 ) log 1 7 4 = 4 =\left( \huge \log_{128}2 \right)^{ \log_{\frac{1}{2^{3}}+\frac{1} {2^6}+\frac{1}{2^9}+\ldots}4 } \\ = \left(\huge \frac{1}{7}\log_{2}2\right)^{\log_{\left(\frac{\frac{1}{2^3}}{1-\frac{1}{2^3}}\right)}4} \\ \text{We know, } a^{\log_{a}b}=b \\ \therefore \left( \huge \frac{1}{7} \right)^{\log_{\frac{1}{7}}4} = \boxed{4}

Adrian Castro
Jan 8, 2016

A = n = 1 1 2 3 n = n = 1 1 8 n = n = 0 ( 1 8 ) n 1. A=\sum_{n=1}^{\infty}\frac{1}{2^{3n}}=\sum_{n=1}^{\infty}\frac{1}{8^n}=\sum_{n=0}^{\infty}\left ( \frac{1}{8} \right )^n-1.

S i n c e 1 8 < 1 , A c o n v e r g e s t o Since\; \left | \frac{1}{8} \right |< 1, \; A\;converges\;to

1 1 1 8 1 = 1 7 \frac{1}{1-\frac{1}{8}}-1=\frac{1}{7}

If B = l o g 128 ( 2 ) = l o g 2 ( 2 ) l o g 2 ( 128 ) = 1 7 = A B=log_{128}({2})=\frac{log_{2}{(2)}}{log_{2}{(128)}}=\frac{1}{7}=A

then B l o g A 4 = B l o g B 4 = 4 B^{log_{A}{4}}=B^{log_{B}{4}}=\boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...