A calculus problem by Sabhrant Sachan

Calculus Level 4

lim x 0 x ( 1 + a cos x ) b sin x x 3 = 1 \large \lim_{x\to0} \dfrac{x(1+a\cos{x})-b\sin{x}}{x^3}= 1

Let a a and b b be constants satisfying the equation above. Find a 4 × b 4 \lfloor a^4 \times b^4 \rfloor .

Notations : \lfloor \cdot \rfloor denotes the floor function .

None of these choices 200 199 198 201

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 23, 2016

1 = lim x 0 x ( 1 + a cos x ) b sin x x 3 = lim x 0 ( 1 + a cos x x 2 b sin x x 3 ) Using Maclaurin series = lim x 0 ( 1 x 2 [ 1 + a ( 1 x 2 2 ! + x 4 4 ! x 6 6 ! + . . . ) ] b x 3 [ x x 3 3 ! + x 5 5 ! x 7 7 ! + . . . ] ) = lim x 0 ( 1 x 2 + a x 2 a 2 ! + a x 2 4 ! a x 4 6 ! + . . . b x 2 + b 3 ! x 2 5 ! + x 4 7 ! . . . ) Red terms 0 as x 0 = 1 x 2 + a x 2 b x 2 a 2 ! + b 3 ! \begin{aligned} 1 & = \lim_{x \to 0} \frac{x(1+a\cos x) - b\sin x}{x^3} \\ & = \lim_{x \to 0} \left(\frac{1+a\color{#3D99F6}{\cos x}}{x^2} - \frac{b\color{#3D99F6}{\sin x}}{x^3} \right) \quad \quad \small \color{#3D99F6}{\text{Using Maclaurin series}} \\ & = \lim_{x \to 0} \left(\frac{1}{x^2}\left[1 + a \left(\color{#3D99F6}{1-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + ...}\right) \right] - \frac{b}{x^3}\left[\color{#3D99F6}{x-\frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + ...} \right] \right) \\ & = \lim_{x \to 0} \left(\frac{1}{x^2} + \frac{a}{x^2} - \frac{a}{2!} + \color{#D61F06}{\frac{ax^2}{4!} - \frac{ax^4}{6!} + ... } - \frac{b}{x^2} + \frac{b}{3!} - \color{#D61F06}{\frac{x^2}{5!} + \frac{x^4}{7!} - ... } \right) \quad \quad \small \color{#D61F06}{\text{Red terms}\to 0 \text{ as }x \to 0} \\ & = \frac{1}{x^2} + \frac{a}{x^2} - \frac{b}{x^2} - \frac{a}{2!} + \frac{b}{3!} \end{aligned}

Equating coefficients, we have:

{ 1 + a b = 0 b = 1 + a a 2 + b 6 = 1 3 a + 1 + a = 6 a = 5 2 b = 3 2 \begin{cases} 1 + a - b = 0 & \implies b = 1 + a \\ - \dfrac{a}{2} + \dfrac{b}{6} = 1 & \implies - 3a + 1 + a = 6 \implies a = -\dfrac{5}{2} \implies b = - \dfrac{3}{2} \end{cases}

a 4 b 4 = ( 2.5 ) 4 ( 1.5 ) 4 = 197.753 = 197 None of these choices \implies \lfloor a^4b^4 \rfloor = \lfloor (-2.5)^4(-1.5)^4 \rfloor = \lfloor 197.753 \rfloor = 197 \implies \boxed{\text{None of these choices}}

Nice Solution.. +1

Sabhrant Sachan - 5 years ago

should be -1.5 instead of -3.5 at the end there

Drew Sellis - 2 years, 3 months ago

Thanks. I have changed it. I hate problem with tricky answer submission. What is wrong with a + b a+b ? Then we will have nice answer of -4. Some may solve the calculus part which is more important but fail in the computation part for submission.

Chew-Seong Cheong - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...