A calculus problem by Sabhrant Sachan

Calculus Level 1

lim x 1 + x + x 2 x ( ln x ) 3 = ? \large \lim_{x\to \infty} \dfrac{1+x+x^2}{ x(\ln x)^3} = \, ?

If you think the limit does not exist, submit your answer as 0.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Huang
Nov 30, 2016

Express the given limit as lim x 1 x ( ln ( x ) ) 3 + lim x 1 ( ln ( x ) ) 3 + lim x x ( ln ( x ) ) 3 \lim_{x\rightarrow \infty} \dfrac{1}{x\left(\ln(x)\right)^3} + \lim_{x\rightarrow \infty} \dfrac{1}{\left(\ln(x)\right)^3} + \lim_{x\rightarrow \infty} \dfrac{x}{\left(\ln(x)\right)^3}

Since lim x x ( ln ( x ) ) 3 = \lim_{x\rightarrow \infty} x\left(\ln(x)\right)^3 = \infty and lim x ( ln ( x ) ) 3 = \lim_{x\rightarrow \infty} \left(\ln(x)\right)^3 = \infty , lim x 1 x ( ln ( x ) ) 3 = 0 \lim_{x\rightarrow \infty} \dfrac{1}{x\left(\ln(x)\right)^3} = 0 and lim x 1 ( ln ( x ) ) 3 = 0 \lim_{x\rightarrow \infty} \dfrac{1}{\left(\ln(x)\right)^3} = 0 We then evaluate lim x x ( ln ( x ) ) 3 \lim_{x\rightarrow \infty} \dfrac{x}{\left(\ln(x)\right)^3} There are few ways to evaluate the limit.

L'Hôpital's Rule

Since lim x x = \lim_{x\rightarrow \infty} x = \infty and lim x ( ln ( x ) ) 3 = \lim_{x\rightarrow \infty} \left(\ln(x)\right)^3 = \infty , which leads to indeterminate form / \infty / \infty , by L'Hôpital's Rule , lim x d d x ( x ) d d x ( ( ln ( x ) ) 3 ) = lim x 1 3 x ln 2 ( x ) = lim x x 3 ln 2 ( x ) = 1 3 lim x x ln 2 ( x ) \begin{array}{rl} \lim_{x\rightarrow \infty} \dfrac{\frac{d}{dx}(x)}{\frac{d}{dx}\left(\left(\ln(x)\right)^3\right)} &= \lim_{x\rightarrow \infty} \dfrac{1}{\frac{3}{x}\ln^2(x)}\\ &= \lim_{x\rightarrow \infty} \dfrac{x}{3\ln^2(x)}\\ &= \dfrac{1}{3} \lim_{x\rightarrow \infty} \dfrac{x}{\ln^2(x)} \end{array} By the same reason, 1 3 lim x x ln 2 ( x ) = 1 3 lim x 1 2 x ln ( x ) = 1 6 lim x x ln ( x ) = 1 6 lim x 1 1 x = 1 6 lim x x = \begin{array}{rl} \dfrac{1}{3} \lim_{x \rightarrow \infty} \dfrac{x}{\ln^2(x)} &= \dfrac{1}{3} \lim_{x\rightarrow \infty} \dfrac{1}{\frac{2}{x}\ln(x)}\\ &= \dfrac{1}{6} \lim_{x \rightarrow \infty} \dfrac{x}{\ln(x)}\\ &= \dfrac{1}{6} \lim_{x \rightarrow \infty} \dfrac{1}{\frac{1}{x}}\\ &= \dfrac{1}{6} \lim_{x \rightarrow \infty} x\\ &= \infty \end{array}

Logarithm Trick

Instead of L'Hôpital's Rule, we can evaluate the limit by ln \ln i.e. y = lim x x ln 3 ( x ) ln ( y ) = lim x ln ( x ln 3 ( x ) ) = lim x ln ( x ) 3 lim x ln ( ln ( x ) ) = lim x ln ( x ) + 0 = lim x ln ( x ) \begin{array}{rl} y &= \lim_{x\rightarrow \infty} \dfrac{x}{\ln^3(x)}\\ \ln(y) &= \lim_{x \rightarrow \infty} \ln\left(\dfrac{x}{\ln^3(x)}\right)\\ &= \lim_{x \rightarrow \infty} \ln(x) - 3 \lim_{x \rightarrow \infty} \ln\left( \ln(x)\right)\\ &= \lim_{x \rightarrow \infty} \ln(x) + 0\\ &= \lim_{x \rightarrow \infty} \ln(x) \end{array} Since lim x ln ( x ) = \lim_{x \rightarrow \infty} \ln(x) = \infty , y = y = \infty , which proves that limit does not exist \boxed{\text{limit does not exist}} .

Omar Hassan
Mar 8, 2016

I answered 0 as the problem told me lol...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...