Arithmetic Progression in Polynomials

Algebra Level 3

If the zeroes of x 3 3 p x 2 + q x r x^{3}-3px^{2}+qx-r are in an arithmetic progression , then which of the following is true?

p 3 = p q r p^{3}=pq-r None of these 2 p 3 = p q r 2p^{3}=pq-r 2 p 3 = p q + r 2p^{3}=pq+r

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 27, 2016

Let the roots of x 3 3 p x 2 + q x r = 0 x^3-3px^2+qx-r=0 be a a , b b and c c by Vieta's formula , we have:

{ a + b + c = 3 p . . . ( 1 ) a b + b c + c a = q . . . ( 2 ) a b c = r . . . ( 3 ) \begin{cases} a+b+c = 3p & ...(1) \\ ab+bc+ca = q & ...(2) \\ abc = r & ...(3) \end{cases}

Since a a , b b and c c are in AP, then a + c = 2 b a+c = 2b . Therefore, from ( 1 ) : a + b + c = 3 b = 3 p b = p . . . ( 4 ) (1): \ a+b+c = 3b = 3p \implies b = p \quad ...(4) .

( 2 ) : a b + b c + c a = q ( a + c ) b + c a = q 2 b 2 + c a = q Multiply both sides by b 2 b 3 + a b c = b q ( 3 ) : a b c = r , ( 4 ) : b = p 2 p 3 + r = p q \begin{aligned} (2): \quad ab+bc +ca & = q \\ (a+c)b + ca & = q \\ 2b^2 + ca & = q & \small \color{#3D99F6}{\text{Multiply both sides by }b} \\ 2\color{#3D99F6}{b}^3 + \color{#3D99F6}{abc} & = \color{#3D99F6}{b}q & \small \color{#3D99F6}{(3): \ abc = r, \ (4): \ b = p} \\ 2\color{#3D99F6}{p}^3 + \color{#3D99F6}{r} & = \color{#3D99F6}{p}q \end{aligned}

2 p 3 = p q r \implies \boxed{2p^3=pq-r}

Satwik Murarka
Sep 27, 2016

Let α β , α , α + β be zeroes of the given polynomial α β + α + α β = 3 p α = p We know that, α 3 3 p α 2 + p α r = 0 Replacing α by p,we get p 3 3 p 3 + p q r = 0 2 p 3 = p q r \alpha-\beta,\alpha,\alpha+\beta\ \text{be zeroes of the given polynomial}\\ \alpha-\beta+\alpha+\alpha-\beta=3p\\ \alpha=p\\ \text{We know that,}\\ \alpha^{3}-3p\alpha^{2}+p\alpha-r=0\\ \text{Replacing}\ \alpha\ \text{by p,we get}\\ p^{3}-3p^{3}+pq-r=0\\ \boxed{2p^{3}=pq-r}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...