A geometry problem by shubham gupta

Geometry Level 3

The value of tan3A-tan2A-tanA is equal to

none of these -tan3A tan2A tanA tan3A tan2A tanA 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shabarish Ch
May 27, 2014

3 A = A + 2 A 3A = A + 2A

tan 3 A = tan ( A + 2 A ) \tan3A = \tan(A+2A)

tan 3 A = tan A + tan 2 A 1 tan A tan 2 A \tan3A = \frac{\tan A + \tan2A}{1 - \tan A\tan2A}

tan 3 A tan 3 A tan 2 A tan A = tan A + tan 2 A \tan3A - \tan3A\tan2A\tan A = \tan A + \tan2A

tan 3 A tan 2 A tan A = tan 3 A tan 2 A tan A \tan3A - \tan2A -\tan A = \tan3A\tan2A\tan A

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...