A probability problem by Sourabh Jangid

Let { a n } n = 0 \{a_n\}_{n=0}^\infty be a sequence that satisfy the recurrence relation a n + 2 = 2 a n + 1 + a n a_{n+2} = 2a_{n+1} + a_n , where n = 1 , 2 , n =1,2,\ldots and a 0 = a 1 = 1 a_0 = a_1 = 1 .

If n = 0 a n 5 2 n = 599 + α 574 \displaystyle \sum_{n=0}^\infty \dfrac{a_n}{5^{2n}} = \dfrac{599 + \alpha}{574} for positive integer α \alpha , find α \alpha .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 12, 2017

From the recurrence relation a n + 2 = 2 a n + 1 + a n a_{n+2} = 2a_{n+1}+a_n , the characteristic equation is r 2 2 r 1 = 0 r^2 - 2r -1 = 0 r = 2 ± 4 + 4 2 = 1 ± 2 \implies r = \dfrac {2 \pm \sqrt{4+4}}2 = 1 \pm \sqrt 2 .

Therefore, we have:

a n = c 1 ( 1 + 2 ) n + c 2 ( 1 2 ) n a 0 = c 1 + c 2 = 1 a 1 = c 1 ( 1 + 2 ) + c 2 ( 1 2 ) 1 = c 1 + c 2 + 2 ( c 1 c 2 ) 1 = 1 + 2 ( c 1 c 2 ) c 1 = c 2 = 1 2 a n = 1 2 ( ( 1 + 2 ) n + ( 1 2 ) n ) \begin{aligned} a_n & = c_1(1+\sqrt 2)^n + c_2(1-\sqrt 2)^n \\ a_0 & = c_1 + c_2 = 1 \\ a_1 & = c_1(1+\sqrt 2) + c_2(1-\sqrt 2) \\ \implies 1 & = c_1 + c_2 + \sqrt 2(c_1-c_2) \\ 1 & = 1 + \sqrt 2(c_1-c_2) \\ \implies c_1 & = c_2 = \frac 12 \\ \implies a_n & = \frac 12 \left((1+\sqrt 2)^n + (1-\sqrt 2)^n \right) \end{aligned}

Then, we have:

n = 0 a n 5 2 n = 1 2 n = 0 [ ( 1 + 2 25 ) n + ( 1 2 25 ) n ] = 1 2 [ 1 1 1 + 2 25 + 1 1 1 2 25 ] = 1 2 [ 25 24 2 + 25 24 + 2 ] = 25 2 [ 24 + 2 + 24 2 ( 24 2 ) ( 24 + 2 ) ] = 25 2 48 2 4 2 2 = 600 574 = 599 + 1 574 \begin{aligned} \sum_{n=0}^\infty \frac {a_n}{5^{2n}} & = \frac 12 \sum_{n=0}^\infty \left[\left(\frac {1+\sqrt 2}{25}\right)^n + \left(\frac {1-\sqrt 2}{25}\right)^n \right] \\ & = \frac 12 \left[\frac 1{1-\frac {1+\sqrt 2}{25}} +\frac 1{1-\frac {1-\sqrt 2}{25}} \right] \\ & = \frac 12 \left[\frac {25}{24 - \sqrt 2} + \frac {25}{24 + \sqrt 2} \right] \\ & = \frac {25}2 \left[\frac {24 + \sqrt 2 + 24 - \sqrt 2}{(24 - \sqrt 2)(24 + \sqrt 2)} \right] \\ & = \frac {25}2 \cdot \frac {48}{24^2-2} \\ & = \frac {600}{574} = \frac {599+1}{574} \end{aligned}

α = 1 \implies \alpha = \boxed{1}

Guilherme Niedu
Jan 11, 2017

Applying Z transform and after some work, one realize that:

a ( n ) = 1 2 [ ( 1 + 2 ) n + ( 1 2 ) n ] \large a(n) = \frac12[(1+\sqrt{2})^n + (1-\sqrt{2})^n]

So

n = 0 a n 5 2 n \large \sum_{n=0}^{\infty} \frac{a_n} {5^{2n}}

Is:

1 2 [ n = 0 ( 1 + 2 25 ) n + n = 0 ( 1 2 25 ) n ] \large \frac12 \Big [\sum_{n=0}^{\infty} (\frac{1+\sqrt{2}} {25})^n + \sum_{n=0}^{\infty} (\frac{1-\sqrt{2}} {25})^n \Big]

= 1 2 [ 1 1 1 + 2 25 + 1 1 1 2 25 ] \large = \frac12 \Big[\frac{1}{1 - \frac{1 + \sqrt{2}}{25}} + \frac{1}{1 - \frac{1 - \sqrt{2}}{25}} \Big]

= 1 2 ( 25 24 2 + 25 24 2 ) \large = \frac12 \Big( \frac{25}{24 - \sqrt{2}} + \frac{25}{24 - \sqrt{2}} \Big)

= 600 574 \large =\frac{600}{574}

So:

α = 1 \color{#3D99F6} \alpha = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...