A problem by Sudeep Salgia

Level 2

Consider a standard ellipse:
x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
where a a and b b are the lengths of semi-major and semi-minor axes respectively.

Now, consider a circle concentric with the ellipse and the radius equal to the length of the semi-major axis of the ellipse, i.e. ,
x 2 + y 2 = a 2 x^2 + y^2 = a^2

A set of complimentary points are defined on these two conics, P P and P P' with a parameter, θ \theta . Point P P is lies on the ellipse and P P' on the circle.

The points are defined as :
P ( θ ) = ( a cos θ , b sin θ ) P(\theta) = (a\cos \theta , b\sin \theta)
P ( θ ) = ( a cos θ , a sin θ ) P'(\theta) = (a\cos \theta , a\sin \theta)

Given, the pairs of complimentary points namely ( A , A A , A' ) , ( B , B B , B' ) and ( C , C C , C' ) with parameters α \alpha , β \beta and γ \gamma , i.e., the points on the ellipse are A ( α ) A(\alpha) , B ( β ) B(\beta) and C ( γ ) C(\gamma) .

Find the ratio of the area of the triangle A B C ABC to that of the triangle A B C A'B'C' .

Details and Assumptions:
a = 5 a = 5
b = 3 b = 3


The answer is 0.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sudeep Salgia
Feb 3, 2014

One of the ways to calculate the area of a triangle when the coordinates of the vertices, namely ( x 1 , y 1 ) , ( x 2 , y 2 ) a n d ( x 3 , y 3 ) (x_{1}, y_{1}) , (x_{2}, y_{2}) and (x_{3}, y_{3}) , are given is,

A r e a = 1 2 ( 1 x 1 y 1 1 x 2 y 2 1 x 3 y 3 ) Area = \frac{1}{2} |\begin{pmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2}\\ 1 & x_{3} & y_{3} \end{pmatrix}|
(That is the absolute value of a determinant and not that of a matrix)

Using the above, we get,

A r e a ( Δ A B C ) = 1 2 ( 1 a cos α b sin α 1 a cos β b sin β 1 a cos γ b sin γ ) = a b 2 ( 1 cos α sin α 1 cos β sin β 1 cos γ sin γ ) Area(\Delta ABC) = \frac{1}{2} |\begin{pmatrix} 1 & a\cos \alpha & b\sin \alpha \\ 1 & a\cos \beta & b\sin \beta\\ 1 & a\cos \gamma & b\sin \gamma \end{pmatrix}| = \frac{ab}{2} |\begin{pmatrix} 1 & \cos \alpha & \sin \alpha \\ 1 & \cos \beta & \sin \beta\\ 1 & \cos \gamma & \sin \gamma \end{pmatrix}|

A r e a ( Δ A B C ) = 1 2 ( 1 a cos α a sin α 1 a cos β a sin β 1 a cos γ a sin γ ) = a 2 2 ( 1 cos α sin α 1 cos β sin β 1 cos γ sin γ ) Area(\Delta A'B'C') = \frac{1}{2} |\begin{pmatrix} 1 & a\cos \alpha & a\sin \alpha \\ 1 & a\cos \beta & a\sin \beta\\ 1 & a\cos \gamma & a\sin \gamma \end{pmatrix}| = \frac{a^{2}}{2} |\begin{pmatrix} 1 & \cos \alpha & \sin \alpha \\ 1 & \cos \beta & \sin \beta\\ 1 & \cos \gamma & \sin \gamma \end{pmatrix}|

Clearly, on taking the ratio,we get,

A r e a ( Δ A B C ) A r e a ( Δ A B C ) \frac{Area(\Delta ABC)}{Area(\Delta A'B'C')} = a b a 2 \frac{ab}{a^{2}} = b a \frac{b}{a}

Plug in the values to get the answer.

Of course a tricky quick way to find the answer is assuming three points (0,5), (0,-5) and (5,0) on the circle for which the corresponding points on ellipse will be (0,3), (0,-3) and (5,0). The areas of both these triangles can be found very simply using area of triangle 1/2bh...

Yathish Dhavala - 7 years, 4 months ago

Just a note: The circle in the question is called director circle.

Shivam Gautam - 7 years, 4 months ago

Log in to reply

The circle is called auxiliary circle. Director circle is the one having radius equal to a 2 + b 2 \sqrt{a^2 +b^2}

Sudeep Salgia - 7 years, 4 months ago

it is called auxilliary circle and not director circle

Priyesh Pandey - 7 years, 2 months ago
Vaibhav Nayak
Feb 15, 2014

For a triangle with vertices ( x 1 , y 1 ) (x_{1},y_{1}) , ( x 2 , y 2 ) (x_{2},y_{2}) and ( x 3 , y 3 ) (x_{3},y_{3}) ; area is given by:

A = 1 2 [ x 1 ( y 2 y 3 ) + x 2 ( y 3 y 2 ) + x 3 ( y 1 y 2 ] A=\frac{1}{2}[x_{1}(y_{2} - y_{3})+x_{2}(y_{3} - y_{2})+x_{3}(y_{1} - y_{2}]

So area of triangle A B C ABC , say A 1 A_{1} will be:

A 1 = 1 2 [ a cos α ( b sin β b sin γ ) + a cos β ( b sin γ b sin α ) + a cos γ ( b sin α b sin β ) ] A_{1}=\frac{1}{2}[a\cos \alpha(b\sin \beta - b\sin \gamma)+a\cos \beta(b\sin \gamma - b\sin \alpha)+a\cos \gamma(b\sin \alpha - b\sin \beta)]

A 1 = 1 2 [ a b ( cos α sin β cos α sin γ ) + a b ( cos β sin γ cos β sin α ) + a b ( cos γ sin α cos γ sin β ) ] \therefore A_{1}=\frac{1}{2}[ab(\cos \alpha\sin \beta - \cos \alpha\sin \gamma)+ab(\cos \beta\sin \gamma - \cos \beta\sin \alpha)+ab(\cos \gamma\sin \alpha - \cos \gamma\sin \beta)]

A 1 = a b 2 [ ( cos α sin β cos β sin α ) + ( cos β sin γ cos γ sin β ) + ( cos γ sin α cos α sin γ ) ] \therefore A_{1}=\frac{ab}{2}[(\cos \alpha\sin \beta - \cos \beta\sin \alpha)+(\cos \beta\sin \gamma - \cos \gamma\sin \beta)+(\cos \gamma\sin \alpha - \cos \alpha\sin \gamma)]

A 1 = a b 2 [ ( cos α sin β cos β sin α ) + ( cos β sin γ cos γ sin β ) + ( cos γ sin α cos α sin γ ) ] \therefore A_{1}=\frac{ab}{2}[(\cos \alpha\sin \beta - \cos \beta\sin \alpha)+(\cos \beta\sin \gamma - \cos \gamma\sin \beta)+(\cos \gamma\sin \alpha - \cos \alpha\sin \gamma)]

A 1 = a b 2 [ cos ( α + β ) + cos ( β + γ ) + cos ( γ + α ) ] \therefore A_{1}=\frac{ab}{2}[\cos (\alpha+\beta)+\cos (\beta+\gamma)+\cos (\gamma+\alpha)]

Through similar operations for triangle A B C ) A^{'}B^{'}C^{'}) , it turns out that its area A 2 A_{2} :

A 2 = a 2 2 [ cos ( α + β ) + cos ( β + γ ) + cos ( γ + α ) ] A_{2}=\frac{a^{2}}{2}[\cos (\alpha+\beta)+\cos (\beta+\gamma)+\cos (\gamma+\alpha)]

So, required ratio:

A 1 A 2 = a b a 2 = b a = 3 5 = 0.6 \frac{A_{1}}{A_{2}}=\frac{ab}{a_{2}}=\frac{b}{a}=\frac{3}{5}=\boxed{0.6} s q . u n i t s sq. units

And there's a wonderful solution above mine. I'm learning :)

Vaibhav Nayak - 7 years, 3 months ago
Ahmed R. Maaty
Mar 10, 2014

SA of ABC= 15

SA of A'B'C'=25

ratio= 15/25=0.6

Click Here

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...