An algebra problem by Sumukh Bansal

Algebra Level 3

27 + 756 3 + 27 756 3 \large \sqrt[3]{27+\sqrt{756}} + \sqrt[3]{27-\sqrt{756}}

Find the real value of the expression above.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 24, 2017

x = 27 + 756 3 + 27 756 3 x 3 = ( 27 + 756 3 ) 3 + 3 ( 27 + 756 3 ) 2 27 756 3 + 3 27 + 756 3 ( 27 756 3 ) 2 + ( 27 756 3 ) 3 = 27 + 756 + 3 27 + 756 3 2 7 2 756 3 + 3 2 7 2 756 3 27 756 3 + 27 756 = 54 + 3 ( 27 3 ) ( 27 + 756 3 + 27 756 3 ) = 54 9 x \begin{aligned} x & = \sqrt[3]{27+\sqrt{756}} + \sqrt[3]{27-\sqrt{756}} \\ \implies x^3 & = \left(\sqrt[3]{27+\sqrt{756}}\right)^3 + 3\left(\sqrt[3]{27+\sqrt{756}}\right)^2 \sqrt[3]{27-\sqrt{756}} + 3 \sqrt[3]{27+\sqrt{756}} \left(\sqrt[3]{27-\sqrt{756}}\right)^2 + \left(\sqrt[3]{27-\sqrt{756}}\right)^3 \\ & = 27+\sqrt{756} + 3 \sqrt[3]{27+\sqrt{756}} {\color{#3D99F6}\sqrt[3]{27^2-756}} + 3{\color{#3D99F6}\sqrt[3]{27^2-756}} \sqrt[3]{27-\sqrt{756}} + 27-\sqrt{756} \\ & = 54 + 3\left({\color{#3D99F6}\sqrt[3]{-27}} \right)\left(\sqrt[3]{27+\sqrt{756}} + \sqrt[3]{27-\sqrt{756}}\right) \\ & = 54 - 9x \end{aligned}

x 3 + 9 x 54 = 0 ( x 3 ) ( x 2 + 3 x + 18 ) = 0 x = 3 \begin{aligned} \implies x^3 + 9x - 54 & = 0 \\ (x-3)(x^2+3x+18) & = 0 \\ \implies x & = \boxed{3} \end{aligned}

Note that x 2 + 3 x + 18 = 0 x^2+3x+18=0 has no real root.

Sumukh Bansal
Sep 21, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...