Linear Recurrence With Little Information

An infinite sequence of real numbers a 1 , a 2 , a_1,a_2,\ldots satisfies the recurrence a n + 3 = a n + 2 2 a n + 1 + a n a_{n+3}=a_{n+2}-2a_{n+1}+a_n for every positive integer n n .

Given that a 1 = a 3 = 1 a_1=a_3=1 and a 98 = a 99 a_{98}=a_{99} , compute a 1 + a 2 + + a 100 a_1+a_2+\cdots+a_{100} .


Source: HMMT.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let us denote sum of n n terms is S ( n ) S(n) and n th n^\text{th} term be denoted by a ( n ) a(n) .

a ( n + 3 ) = [ a ( n + 2 ) a ( n + 1 ) a ( n + 1 ) a ( n ) ] a(n+3)=[{a(n+2)-a(n+1)}-{a(n+1)-a(n)}] . Let us name this equation as A A .

Then by taking summation on both sides of equation A A we have S ( n + 3 ) = a ( n + 2 ) a ( n + 1 ) + a ( 1 ) a ( 2 ) S(n+3)=a(n+2)-a(n+1) +a(1)-a(2) .

Let this equation be B B . Now put n = 1 n=1 in A A to get :

a ( 4 ) = a ( 3 ) 2 a ( 2 ) + a ( 1 ) a(4)=a(3)-2a(2)+a(1) . Let this equation be C C . Now put n = 1 n=1 in B B . Then :
S ( 4 ) = a ( 1 ) 2 a ( 2 ) + a ( 3 ) S(4)= a(1)-2a(2)+a(3) . Let this equation be D D . Now eliminate a ( 4 ) a(4) from C C and D D to get a ( 2 ) = 2 a(2)=-2 . Now put n = 97 n=97 in B B to get S ( 100 ) = 1 a ( 2 ) = 3 S(100) = 1-a(2)= 3 .

Chew-Seong Cheong
Jun 12, 2018

a n + 3 = a n + 2 2 a n + 1 + a n Given k = 1 n a k + 3 = k = 1 n ( a k + 2 2 a k + 1 + a k ) k = 4 n + 3 a k = a n + 2 a n + 1 a 2 + a 1 Both sides add a 1 + a 2 + a 3 k = 1 n + 3 a k = a n + 2 a n + 1 + a 3 + 2 a 1 Putting n = 97 k = 1 100 a k = a 99 a 98 + a 3 + 2 a 1 Since a 98 = a 99 = a 3 + 2 a 1 Given that a 1 = a 3 = 1 = 1 + 2 = 3 \begin{aligned} a_{n+3} & = a_{n+2}-2a_{n+1} + a_n & \small \color{#3D99F6} \text{Given} \\ \sum_{k=1}^n a_{k+3} & = \sum_{k=1}^n \left(a_{k+2}-2a_{k+1} + a_k \right) \\ \sum_{\color{#3D99F6}k=4}^{n+3} a_k & = a_{n+2} - a_{n+1} - a_2 + a_1 & \small \color{#3D99F6} \text{Both sides add }a_1+a_2+a_3 \\ \sum_{\color{#D61F06}k=1}^{n+3} a_k & = a_{n+2} - a_{n+1} + a_3 + 2a_1 & \small \color{#3D99F6} \text{Putting }n=97 \\ \sum_{k=1}^{100} a_k & = a_{99} - a_{98} + a_3 + 2a_1 & \small \color{#3D99F6} \text{Since }a_{98} = a_{99} \\ & = a_3 + 2a_1 & \small \color{#3D99F6} \text{Given that }a_1=a_3 = 1 \\ & = 1+2=\boxed{3} \end{aligned}

list = LinearRecurrence [ { 1 , 2 , 1 } , { 1 , x , 1 } , 100 ] ; \text{list}=\text{LinearRecurrence}[\{1,-2,1\},\{1,x,1\},100];

list [ [ 98 ;; 99 ] ] { 437763282635 595866622329 x , 1436828120 x 304982319319 } x 742745601954 597303450449 \text{list}[[98\text{;;}99]] \Longrightarrow \{437763282635-595866622329 x,1436828120 x-304982319319\} \Longrightarrow x\to \frac{742745601954}{597303450449}

Plus@@LinearRecurrence [ { 1 , 2 , 1 } , { 1 , 742745601954 597303450449 , 1 } , 100 ] 3 \text{Plus}\text{@@}\text{LinearRecurrence}\left[\{1,-2,1\},\left\{1,\frac{742745601954}{597303450449},1\right\},100\right] \longrightarrow 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...