An algebra problem by vansh gupta

Algebra Level 3

Let a a and b b , where a > b a>b , be the roots of the equation x 2 6 x 2 = 0 x^2 - 6x - 2= 0 . Denote α n = a n + b n \alpha_n = a^n + b^n , where n n is a positive integer. Find the value of α 10 2 α 8 2 α 9 \dfrac{\alpha_{10} - 2\alpha_8}{2\alpha_9} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 27, 2017

Since a a and b b are roots of x 2 6 x 2 = 0 x^2-6x-2=0 , by Vieta's formula , a + b = 6 a+b=6 and a b = 2 ab=-2 . And using Newton's sums method for n 3 n\ge 3 :

a n + b n = ( a + b ) ( a n 1 + b n 1 ) a b ( a n 2 + b n 2 ) α n = 6 α n 1 + 2 α n 2 \begin{aligned} a^n+b^n & = (a+b)\left(a^{n-1}+b^{n-1}\right) - ab\left(a^{n-2}+b^{n-2}\right) \\ \implies \alpha_n & = 6 \alpha_{n-1} + 2 \alpha_{n-2} \end{aligned}

Therefore, we have α 10 2 α 8 2 α 9 = 6 α 9 + 2 α 8 2 α 8 2 α 9 = 6 α 9 2 α 9 = 3 \begin{aligned} \frac {\alpha_{10} - 2 \alpha_8}{2\alpha_9} & = \frac {6\alpha_9 + 2 \alpha_8 - 2 \alpha_8}{2\alpha_9} = \frac {6\alpha_9}{2\alpha_9} = \boxed{3} \end{aligned} .

Satwik Murarka
Apr 27, 2017

Solution:

a a and b b are the roots of the polynomial x 2 6 x 2 x^{2}-6x-2

By Vieta's formula,

a + b = 6 ( 1 ) a b = 2 ( 2 ) \large\color{#D61F06}{a+b=6 \hspace{1cm}\cdots(1)\\\large ab=-2\hspace{1cm}\cdots(2)}

α 10 2 α 8 2 α 9 = a 10 + b 10 2 a 8 2 b 8 2 ( a 9 + b 9 ) = a 10 + a 9 b + b 10 + b 9 a 2 ( a 9 + b 9 ) ( 2 = a b ) = a 9 ( a + b ) + b 9 ( a + b ) 2 ( a 9 + b 9 ) = ( a + b ) ( a 9 + b 9 ) 2 ( a 9 + b 9 ) = 6 2 ( a + b = 6 ) = 3 \begin{aligned}\large\dfrac{\alpha_{10}-2\alpha_{8}}{2\alpha_9}&=\large\dfrac{a^{10}+b^{10}-2a^{8}-2b^{8}}{2(a^{9}+b^9)}\\ &=\large\dfrac{a^{10}+a^{9}b+b^{10}+b^9a}{2(a^9+b^9)}\hspace{1cm}\color{#3D99F6}(-2=ab)\\ &=\large\dfrac{a^9(a+b)+b^9(a+b)}{2(a^9+b^9)}\\ &=\large\dfrac{(a+b)\cancel{\color{#D61F06}(a^9+b^9)}}{2\cancel{\color{#D61F06}(a^9+b^9)}}\\ &=\large\dfrac{6}{2}\hspace{4cm}\color{#3D99F6}(a+b=6)\\ &=\large\boxed{3}\end{aligned}

Tapas Mazumdar
Apr 27, 2017

Since a a and b b are the roots of the quadratic, we have

x 2 6 x 2 = 0 { a 2 6 a 2 = 0 a 10 6 a 9 2 a 8 = 0 Multiplying both sides of the equation by a 8 b 2 6 b 2 = 0 b 10 6 b 9 2 b 8 = 0 Multiplying both sides of the equation by b 8 x^2 - 6x -2 = 0 \ \begin{cases} a^2 - 6a -2 = 0 \implies a^{10} - 6a^9 - 2a^8 = 0 & \small{\color{#3D99F6} \text{Multiplying both sides of the equation by } a^8} \\ \\ b^2 - 6b -2 = 0 \implies b^{10} - 6b^9 - 2b^8 = 0 & \small{\color{#3D99F6} \text{Multiplying both sides of the equation by } b^8} \end{cases}

Adding both cases, we get

( a 10 + b 10 ) 6 ( a 9 + b 9 ) 2 ( a 8 + b 8 ) = 0 α 10 6 α 9 2 α 8 = 0 α 10 2 α 8 = 6 α 9 α 10 2 α 8 2 α 9 = 3 \begin{aligned} & {\color{#D61F06} \left( a^{10} + b^{10} \right)} - 6 {\color{#20A900} \left( a^9 + b^9 \right)} - 2 {\color{#EC7300} \left( a^8 + b^8 \right)} = 0 \\ \implies & {\color{#D61F06} \alpha_{10}} - 6 {\color{#20A900} \alpha_9} - 2 {\color{#EC7300} \alpha_8} = 0 \\ \implies & \alpha_{10} - 2 \alpha_8 = 6 \alpha_9 \\ \implies & \dfrac{\alpha_{10} - 2 \alpha_8}{2 \alpha_9} = \boxed{3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...