Definitely not a complex!

Algebra Level 4

If k k is a positive integer, then k 7 7 + k 5 5 + 2 k 3 3 k 105 \dfrac { { k }^{ 7 } }{ 7 } +\dfrac { { k }^{ 5 } }{ 5 } +\dfrac { { 2k }^{ 3 } }{ 3 } -\dfrac { k }{ 105 } is definitely a/an _________ \text{\_\_\_\_\_\_\_\_\_} .

Always 0 Integer Irrational Rational but not integer

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vishnu Kadiri
Sep 12, 2016

A simpler proof can be given by mathematical induction although I really appreciate your approach

Siddharth Yadav - 4 years, 9 months ago

Note that, as pointed out in other solution, we can write the expression as 15 k 7 + 21 k 5 + 70 k 3 k 105 \frac{15k^7+21k^5+70k^3-k}{105} Now, from Fermat's little theorem, it follows that k 7 k ( m o d 7 ) , k 5 k ( m o d 5 ) , k 3 k ( m o d 3 ) k^7\equiv k (\mod 7),\ k^5\equiv k (\mod 5),\ k^3\equiv k (\mod 3) . Thus, 15 k 7 15 k ( m o d 105 ) , 21 k 5 21 k ( m o d 105 ) , 70 k 3 70 k ( m o d 105 ) 15k^7\equiv 15k (\mod 105),\ 21k^5\equiv 21k (\mod 105),\ 70k^3\equiv 70k (\mod 105) . Thus, 15 k 7 + 21 k 5 + 70 k 3 k 106 k k ( m o d 105 ) 0 ( m o d 105 ) 15k^7+21k^5+70k^3-k\equiv 106k-k (\mod 105)\equiv 0\ (\mod 105) . Hence the expression given is an integer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...