An algebra problem by Vishnu Kadiri

Algebra Level 3

Let P 1 = x 2 + a 1 x + b 1 P_1 = x^2 + a_1 x + b_1 and P 2 = x 2 + a 2 x + b 2 P_2 = x^2 + a_2 x + b_2 be polynomials with integer coefficients, and a 1 a 2 a_1 \ne a_2 . Suppose there exists some integers m m and n n satisfying P 1 ( m ) = P 2 ( n ) P_1(m) = P_2 (n) and P 1 ( n ) = P 2 ( m ) P_1 (n) = P_2 (m) , what can we conclude about the value of a 1 a 2 a_1 - a_2 ?

Odd number Even number Irrational number Prime number

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu Kadiri
Jul 29, 2016

P 1 ( m ) = P 2 ( n ) = m 2 + a 1 m + b 1 = n 2 + a 2 n + b 2 1 P_1 (m)=P_2 (n)=m^2+a_1 m+b_1=n^2+a_2 n+b_2→1

P 1 ( n ) = P 2 ( m ) = n 2 + a 1 n + b 1 = m 2 + a 2 m + b 2 2 P_1 (n)=P_2 (m)=n^2+a_1 n+b_1=m^2+a_2 m+b_2→2 Subtracting 2 from 1, m 2 n 2 + a 1 m a 1 n = n 2 m 2 + a 2 n a 2 m m^2-n^2+a_1 m-a_1 n=n^2-m^2+a_2 n-a_2 m

( m + n ) ( m n ) + a 1 ( m n ) = ( n m ) ( n + m ) + a 2 ( n m ) (m+n)(m-n)+a_1 (m-n)=(n-m)(n+m)+a_2 (n-m)

( m n ) ( m + n + a 1 ) = ( n m ) ( n + m + a 2 ) (m-n)(m+n+a_1 )=(n-m)(n+m+a_2)

( m n ) ( m + n + a 1 ) = ( m n ) 1 ( n + m + a 2 ) (m-n)(m+n+a_1 )=(m-n)*-1(n+m+a_2)

m + n + a 1 = n m a 2 m+n+a_1=-n-m-a_2

m + n + a 1 a 2 + a 2 = n m a 2 m+n+a_1-a_2+a_2=-n-m-a_2

a 1 a 2 = m n a 2 m n a 2 a_1 -a_2=-m-n-a_2-m-n-a_2

a 1 a 2 = 2 ( m n a 2 ) a_1 -a_2=2(-m-n-a_2) If some integer is multiplied by 2, then the product is even. a 1 a 2 = 2 ( m n a 2 ) e v e n ∴a_1-a_2=2(-m-n-a_2 )⇒even
Q.E.D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...