Let and be polynomials with integer coefficients, and . Suppose there exists some integers and satisfying and , what can we conclude about the value of ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
P 1 ( m ) = P 2 ( n ) = m 2 + a 1 m + b 1 = n 2 + a 2 n + b 2 → 1
P 1 ( n ) = P 2 ( m ) = n 2 + a 1 n + b 1 = m 2 + a 2 m + b 2 → 2 Subtracting 2 from 1, m 2 − n 2 + a 1 m − a 1 n = n 2 − m 2 + a 2 n − a 2 m
( m + n ) ( m − n ) + a 1 ( m − n ) = ( n − m ) ( n + m ) + a 2 ( n − m )
( m − n ) ( m + n + a 1 ) = ( n − m ) ( n + m + a 2 )
( m − n ) ( m + n + a 1 ) = ( m − n ) ∗ − 1 ( n + m + a 2 )
m + n + a 1 = − n − m − a 2
m + n + a 1 − a 2 + a 2 = − n − m − a 2
a 1 − a 2 = − m − n − a 2 − m − n − a 2
a 1 − a 2 = 2 ( − m − n − a 2 ) If some integer is multiplied by 2, then the product is even. ∴ a 1 − a 2 = 2 ( − m − n − a 2 ) ⇒ e v e n
Q.E.D