An algebra problem by Yahia El Haw

Algebra Level 1

( 1 + 100 ) + ( 2 + 99 ) + ( 3 + 98 ) + ( 4 + 97 ) + + ( 50 + 51 ) = ? \large (1+100)+(2+99)+(3+98)+(4+97) +\cdots+ (50+51)=\, ?


The answer is 5050.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

S = ( 1 + 100 ) + ( 2 + 99 ) + ( 3 + 98 ) + ( 4 + 97 ) + + ( 50 + 51 ) = 101 + 101 + 101 + 101 + + 101 50 × 101 = 5050 \begin{aligned} S & = ({\color{#3D99F6}1}+100) + ({\color{#3D99F6}2}+99) + ({\color{#3D99F6}3}+98) + ({\color{#3D99F6}4}+97) + \cdots + ({\color{#3D99F6}50} +51) \\ & = \underbrace{101+101+101+101+ \cdots + 101}_{{\color{#3D99F6}50}\times 101} \\ & = \boxed{5050} \end{aligned}

I think chew swing method is very interesting

Biswajit Barik - 4 years, 6 months ago

Good solution

Bayu Prahara - 4 years, 6 months ago
Sabhrant Sachan
Dec 7, 2016

S n = ( 1 + n ) + ( 2 + n 1 ) + ( 3 + n 2 ) + + ( n 2 + n 2 + 1 ) n 2 times For an even ’n’ S n = ( 1 + n ) + ( 1 + n ) + ( 1 + n ) + + ( 1 + n ) n 2 times = n 2 ( n + 1 ) S 100 = 50 × 101 = 5050 S_{n} = \underbrace{ (1+n)+(2+n-1)+(3+n-2)+\cdots+\left(\dfrac{n}{2}+\dfrac{n}{2}+1 \right)}_{\frac{n}{2} \text{times}} \quad \quad \small\color{#3D99F6}{\text{For an even 'n'}} \\ S_{n} = \underbrace{ (1+n)+(1+n)+(1+n)+\cdots+(1+n)}_{\frac{n}{2} \text{times}} = \dfrac{n}{2}(n+1) \\ S_{100} = 50 \times 101 = 5050

It is clearly seen that all the terms are 101 101 . Since the number of terms is 50 50 , the sum is 101 ( 50 ) = 5050 101(50)=5050

Md,shafiqul Alom
May 19, 2017

S=(101*100)/2

Oliver Papillo
Jan 1, 2017

This is equal to the 100 100 th triangular number.

The formula for the n n th triangular number is n ( n + 1 ) 2 \frac{n(n+1)}{2} .

So the answer is 100 101 2 = 5050 \frac{100*101}{2} = 5050 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...