A problem by Yahia El Haw

Level pending

A B C D ABCD is a parallelogram. E E is a point on it. E D \overrightarrow { ED } is a bisector for ( A D C ) ^ \hat { (ADC) } . E C \overrightarrow { EC } is a bisector for ( D C B ) ^ \hat { (DCB) } . F F is the midpoint of D C DC .

Choose the correct answer

E F = F C EF=FC E F < F C EF<FC E F > F C EF>FC

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yahia El Haw
Nov 19, 2016

\because A D AD // B C BC

\therefore ( A D C ) ^ \hat { (ADC) } + ( D C B ) ^ \hat { (DCB) } = 180 { 180 }^{ \circ }

\therefore 1 2 \frac { 1 }{ 2 } ( A D C ) ^ \hat { (ADC) } + 1 2 \frac { 1 }{ 2 } ( D C B ) ^ \hat { (DCB) } = 90 { 90 }^{ \circ }

\therefore ( E D C ) ^ \hat { (EDC) } + ( D C E ) ^ \hat { (DCE) } = 90 { 90 }^{ \circ }

\because The Measurements of \triangle = 180 { 180 }^{ \circ }

\therefore ( D E C ) ^ \hat { (DEC) } = 90 { 90 }^{ \circ }

\because D F DF = F C FC

\therefore E F EF = 1 2 \frac { 1 }{ 2 } D C DC

\therefore E F EF = F C FC

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...