A problem by Yahia El Haw

Level pending

Show that in a convex quadrilateral the bisector of two consecutive angles forms an angle whose measure is equal to half the sum of the measures of the other two angles.

m ( C ^ ) + m ( D ^ ) 2 \frac { m\left( \hat { C } \right) +m\left( \hat { D } \right) }{ 2 } m ( C ^ ) m ( D ^ ) 2 \frac { m\left( \hat { C } \right) -m\left( \hat { D } \right) }{ 2 } m ( D ^ ) m ( C ^ ) 2 \frac { m\left( \hat { D } \right) -m\left( \hat { C } \right) }{ 2 } m ( C ^ ) + m ( B ^ ) 2 \frac { m\left( \hat { C } \right) +m\left( \hat { B } \right) }{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yahia El Haw
Dec 1, 2016

m ( A E B ^ ) = m ( D ^ ) + m ( C ^ ) 2 m\left( \hat { AEB } \right) = \frac { m\left( \hat { D } \right) +m\left( \hat { C } \right) }{ 2 }

m ( A ^ ) + m ( B ^ ) + m ( C ^ ) + m ( D ^ ) = 360 m\left( \hat { A } \right) +m\left( \hat { B } \right) +m\left( \hat { C } \right) +m\left( \hat { D } \right) ={ 360 }^{ \circ }

m ( A ^ ) + m ( B ^ ) 2 = 180 m ( C ^ ) + m ( D ^ ) 2 \frac { m\left( \hat { A } \right) +m\left( \hat { B } \right) }{ 2 } ={ 180 }^{ \circ }-\frac { m\left( \hat { C } \right) +m\left( \hat { D } \right) }{ 2 }

m ( A E B ^ ) = 180 m ( A ^ ) 2 m ( B ^ ) 2 m\left( \hat { AEB } \right) ={ 180 }^{ \circ }-\frac { m\left( \hat { A } \right) }{ 2 } -\frac { m\left( \hat { B } \right) }{ 2 }

= 180 180 + m ( C ^ ) + m ( D ^ ) 2 = m ( C ^ ) + m ( D ^ ) 2 ={ 180 }^{ \circ }-{ 180 }^{ \circ }+\frac { m\left( \hat { C } \right) +m\left( \hat { D } \right) }{ 2 } =\frac { m\left( \hat { C } \right) +m\left( \hat { D } \right) }{ 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...