A problem for 6th graders

Algebra Level 2

4 + 2 2 + 2 3 + 2 4 + + 2 20 = ? \large 4+2^2+2^3+2^4+\cdots+2^{20} = \ ?

2 18 2^{18} 2 21 2^{21} 2 19 2^{19} 2 22 2^{22} 2 20 2^{20}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Thành Đạt Lê
Aug 17, 2017

This is far too easy for 6th graders. But, anyway,... 4 + 2 2 + 2 3 + 2 4 + . . . + 2 20 4 + 2^2 + 2^3 + 2^4 + ... + 2^{20}

= 2 2 + 2 2 + 2 3 + 2 4 + . . . + 2 20 = 2^2 + 2^2 + 2^3 + 2^4 + ... + 2^{20}

= 2 3 + 2 3 + 2 4 + . . . + 2 20 = 2^3 + 2^3 + 2^4 + ... + 2^{20}

= 2 4 + 2 4 + . . . + 2 20 = 2^4 + 2^4 + ... + 2^{20}

= . . . =...

= 2 21 = 2^{21} .

Mahdi Raza
Jun 29, 2020

\[\begin{align} E &= (1 + 2^0 + 2^1) + 2^2 + 2^3 + \ldots + 2^{20} \\ &= 1 + 2^0 + 2^1 + 2^2 + 2^3 + \ldots + 2^{20} \\ &= 1 + \dfrac{2^0(2^{21} - 1)}{2-1} \\ &= 1 + 2^{21} - 1 \\ &= \boxed{2^{21}}

\end{align}\]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...