A Problem from Gaokao 2016

Algebra Level 4

If a > b > 1 , 0 < c < 1 , a>b>1,0<c<1, then

a log b c < b log a c a\log_bc<b\log_ac log a c < log b c \log_ac<\log_bc a c < b c a^c<b^c a b c < b a c ab^c<ba^c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Jul 30, 2018

Note that by changing the base of the logarithms, a log b c b log a c = ln c ln a ln b ( a ln a b ln b ) a\log_bc - b\log_ac = \frac{\ln c}{\ln a \ln b} \left(a\ln a - b\ln b\right)

Since a , b > 1 > c > 0 a,b > 1 > c > 0 , we have ln c < 0 < ln a , ln b \ln c < 0 < \ln a, \ln b , so ln c ln a ln b < 0. \frac{\ln c}{\ln a \ln b} < 0.

Also, since 1 < b < a 1 < b < a we have { 0 < b < a 0 < ln b < ln a } 0 < b ln b < a ln a a ln a b ln b > 0 \left\{\begin{array}{c} 0 < b < a \\ 0 < \ln b < \ln a \end{array}\right\} \implies 0 < b \ln b < a \ln a \implies a\ln a - b\ln b > 0

It follows that a log b c b log a c = ln c ln a ln b ( a ln a b ln b ) < 0 a log b c < b log a c a\log_bc - b\log_ac = \frac{\ln c}{\ln a \ln b} \left(a\ln a - b\ln b\right) < 0 \implies \boxed{a\log_bc < b\log_ac}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...