A Problem From The Future!

Algebra Level 3

The equation 2027 x 2 + 3047 x 2030 2026 x 2 + 3047 x 2005 = x 5 \sqrt{2027x^{2}+3047x-2030}-\sqrt{2026x^{2}+3047x-2005}=x-5 ,

has two rational roots of the form a b \frac{a}{b} and c d \frac{c}{d} when expressed in its lowest form.

Then find the value of a b c d |ab-cd| .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 13, 2019

2027 x 2 + 3047 x 2030 2026 x 2 + 3047 x 2005 = x 5 2026 x 2 + 3047 x 2005 + x 2 25 2026 x 2 + 3047 x 2005 = x 5 \begin{aligned} \sqrt{2027x^2+3047x-2030} - \sqrt{2026x^2+3047x-2005} & = x-5 \\ \sqrt{{\color{#3D99F6}2026x^2+3047x-2005} + x^2 - 25} - \sqrt{\color{#3D99F6}2026x^2+3047x-2005} & = x-5 \end{aligned}

Let u = 2026 x 2 + 3047 x 2005 u = 2026x^2+3047x-2005 , then

u + x 2 25 u = x 5 Rearranging u + x 2 25 = x 5 + u Squaring both sides u + x 2 25 = x 2 10 x + 25 + 2 ( x 5 ) u + u 2 ( x 5 ) u 10 x + 50 = 0 ( x 5 ) ( u 5 ) = 0 \begin{aligned} \sqrt{{\color{#3D99F6}u} + x^2 - 25} - \sqrt{\color{#3D99F6}u} & = x-5 & \small \color{#3D99F6} \text{Rearranging} \\ \sqrt{u+x^2-25} & = x-5 + \sqrt u & \small \color{#3D99F6} \text{Squaring both sides} \\ u + x^2 - 25 & = x^2 - 10x + 25 + 2(x-5)\sqrt u + u \\ 2(x-5)\sqrt u - 10x + 50 & = 0 \\ \implies (x-5)(\sqrt u - 5) & = 0 \end{aligned}

x = 5 \implies \color{#3D99F6} x = 5 is a root and

u = 5 Squaring both sides 2026 x 2 + 3047 x 2005 = 25 As u = 2026 x 2 + 3047 x 2005 2026 x 2 + 3047 x 2030 = 0 ( 2 x 1 ) ( 1013 x + 2030 ) = 0 \begin{aligned} \sqrt u & = 5 & \small \color{#3D99F6} \text{Squaring both sides} \\ 2026x^2+3047x-2005 & = 25 & \small \color{#3D99F6} \text{As }u = 2026x^2+3047x-2005 \\ 2026x^2+3047x-2030 & = 0 \\ (2x - 1)(1013x +2030) & = 0 \end{aligned}

x = { 1 2 2030 1013 Not a root when check with the original equation. \implies x = \begin{cases} \color{#3D99F6} \frac 12 \\ \color{#D61F06}- \frac {2030}{1013} & \small \color{#D61F06} \text{Not a root when check with the original equation.} \end{cases}

Therefore the roots are 1 2 \frac 12 and 5 1 \frac 51 and a b c d = 1 × 2 5 × 1 = 3 |ab-cd| = |1\times 2 - 5 \times 1| = \boxed 3 .

Anand Raj
Jun 13, 2019

Let 2027 x 2 + 3047 x 2030 = A \sqrt{2027x^{2}+3047x-2030}=A and 2026 x 2 + 3047 x 2005 = B \sqrt{2026x^{2}+3047x-2005}=B , then the question says, A B = x 5 A-B=x-5 .

Incidentally, A 2 B 2 = x 2 25 A^{2}-B^{2}=x^{2}-25 . Dividing these two equations we get either x = 5 \boxed{x=5} or A + B = x + 5 A+B=x+5 .

Furthermore, solving these linear equations, we have, A = x A=x and B = 5 B=5 .

Substituting back in the above equation, we have, 2027 x 2 + 3047 x 2030 = x 2026 x 2 + 3047 x 2030 = 0 \sqrt{2027x^{2}+3047x-2030}=x \Rightarrow 2026x^{2}+3047x-2030=0 .

The equation for B B also gives the same quadratic equation.

Solving this quadratic equation we get x = 1 2 \boxed{x=\frac{1}{2}} and x = 2030 1013 x=-\frac{2030}{1013} .

We neglect the negative answer as the output of a square root cannot be negative.

Thus the two roots are x = 5 x=5 and x = 1 2 x=\frac{1}{2} which gives the final answer as 1 × 2 5 × 1 = 3 |1\times2 - 5\times1| = 3 .

Yup, that's how I solved it too. I just rationalize the numerator for A B = A B A + B \sqrt A - \sqrt B = \frac{A - B}{\sqrt A + \sqrt B} .

Thanks for sharing this nice question!

Pi Han Goh - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...