A problem I posted a long time ago... but no one cares.

Level 2

a; b; c \text{a; b; c} are three positive reals such that ( a + b + c ) ( 1 a + 1 b + 1 c ) = n (a + b + c)\left(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}\right) = n and the maximum value of ( a 2 + b 2 + c 2 ) ( 1 a 2 + 1 b 2 + 1 c 2 ) (a^2 + b^2 + c^2)\left(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2}\right) is 16 n 16n .

What's the minimum value of ( a 2 + b 2 + c 2 ) ( 1 a 2 + 1 b 2 + 1 c 2 ) (a^2 + b^2 + c^2)\left(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2}\right) ?


The answer is 481.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Thành Đạt Lê
Apr 14, 2018

We have that ( a + b + c ) ( 1 a + 1 b + 1 c ) (a + b + c)\left(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}\right)

= 3 + a b + a c + b c + b a + c a + c b = 3 + \dfrac{a}{b} + \dfrac{a}{c} + \dfrac{b}{c} + \dfrac{b}{a} + \dfrac{c}{a} + \dfrac{c}{b}

= 3 + c a b c + a b b c + a b c a + b c c a + b c a b + c a a b = 3 + \dfrac{ca}{bc} + \dfrac{ab}{bc} + \dfrac{ab}{ca} + \dfrac{bc}{ca} + \dfrac{bc}{ab} + \dfrac{ca}{ab}

= ( a b + b c + c a ) ( 1 a b + 1 b c + 1 c a ) = (ab + bc + ca)\left(\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca}\right) .

16 n + 2 n = ( a 2 + b 2 + c 2 ) ( 1 a 2 + 1 b 2 + 1 c 2 ) + 2 ( a b + b c + c a ) 2 ( 1 a b + 1 b c + 1 c a ) \sqrt{16n} + 2\sqrt{n} = \sqrt{(a^2 + b^2 + c^2)\left(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2}\right)} + \sqrt{2(ab + bc + ca)2\left(\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca}\right)}

6 n [ a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) ] [ 1 a 2 + 1 b 2 + 1 c 2 + 2 ( 1 a b + 1 b c + 1 c a ) ] \iff 6\sqrt{n} \le \sqrt{[a^2 + b^2 + c^2 + 2(ab + bc + ca)]\left[\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2} + 2\left(\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca}\right)\right]}

6 n ( a + b + c ) ( 1 a + 1 b + 1 c ) = n \iff 6\sqrt{n} \le (a + b + c)\left(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}\right) = n

6 n \iff 6 \le \sqrt{n}

36 n \iff 36 \le n . So the equality happens when n = 36 n = 36 .

(The maximum value of the expression ( a 2 + b 2 + c 2 ) ( 1 a 2 + 1 b 2 + 1 c 2 ) (a^2 + b^2 + c^2)\left(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2}\right) for any n n given is n ( n 2 ) 2 n (n - \sqrt 2)^2 , just to let you know.)


Let x = a b + b c + c a x = \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} and y = a c + b a + c b y = \dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{b}

We have that ( a + b + c ) ( 1 a + 1 b + 1 c ) = n (a + b + c)\left(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}\right) = n

x + y = n 3 \iff x + y = n - 3

( a 2 + b 2 + c 2 ) ( 1 a 2 + 1 b 2 + 1 c 2 ) (a^2 + b^2 + c^2)\left(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2}\right)

= 3 + a 2 b 2 + b 2 c 2 + c 2 a 2 + a 2 c 2 + b 2 a 2 + c 2 b 2 = 3 + \dfrac{a^2}{b^2} + \dfrac{b^2}{c^2} + \dfrac{c^2}{a^2} + \dfrac{a^2}{c^2} + \dfrac{b^2}{a^2} + \dfrac{c^2}{b^2}

= 3 + ( a b + b c + c a ) 2 2 ( a c + b a + c b ) + ( a c + b a + c b ) 2 2 ( a b + b c + c a ) = 3 + \left(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a}\right)^2 - 2\left(\dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{b}\right) + \left(\dfrac{a}{c} + \dfrac{b}{a} + \dfrac{c}{b}\right)^2 - 2\left(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a}\right)

= 3 + x 2 2 y + y 2 2 x = 3 + x^2 - 2y + y^2 - 2x

= 1 + ( x 2 2 + y 2 2 x y ) + ( x 2 2 + y 2 2 + x y 2 x 2 y + 2 ) = 1 + \left(\dfrac{x^2}{2} + \dfrac{y^2}{2} - xy\right) + \left(\dfrac{x^2}{2} + \dfrac{y^2}{2} + xy - 2x - 2y + 2\right)

= 1 + ( x y ) 2 2 + ( x + y 2 ) 2 2 = 1 + \dfrac{(x - y)^2}{2} + \dfrac{(x + y - 2)^2}{2}

1 + ( x + y 2 ) 2 2 \ge 1 + \dfrac{(x + y - 2)^2}{2}

= 1 + ( n 5 ) 2 2 = 1 + \dfrac{(n - 5)^2}{2}

Plugging in n = 36 n = 36 , we have that ( a 2 + b 2 + c 2 ) ( 1 a 2 + 1 b 2 + 1 c 2 ) 1 + 3 1 2 2 = 481.5 (a^2 + b^2 + c^2)\left(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2}\right) \ge 1 + \dfrac{31^2}{2} = 481.5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...