The Sufficient Sums

Algebra Level 3

The sum of the first three terms of a geometric progression is 8. The sum of the first six terms of the same geometric progression is 12.

Find the common ratio of this geometric progression.

Express your answer in two decimal places

0.13 0.79 1.20 1.34

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Roger Erisman
Mar 28, 2016

Let r = common ratio and a = first term

Sum of first 3 terms = a + a r + a r^2 = 8

a * (1 + r + r^2) = 8 => 1 + r + r^2 = 8/a

Sum of first 6 terms = a + a r + a r^2 + a r^3 + a r^4 + a*r^5 = 12

a * (1 + r + r^2) + a * (r^3 + r^4 + r^5) = 12

Since first term is = 8, then a * (r^3 + r^4 + r^5) = 4

a * r^3 * ( 1 + r + r^2) = 4

a * r^3 * (8/a) = 4

r^3 * 8 = 4

r^3 = 0.5

r = 0.79

Correct! Though we can further reduce the calculation if we just do the following:

a r 3 ( 1 + r + r 2 ) a ( 1 + r + r 2 ) = 4 8 r 3 = 1 2 . \dfrac{ar^3(1+r+r^2)}{a(1+r+r^2)}=\dfrac 48 \Rightarrow r^3=\dfrac 12.

Thanks! ¨ \ddot \smile

Sandeep Bhardwaj - 5 years, 2 months ago
Fidel Simanjuntak
Apr 18, 2017

The sum of the first n n -terms of a geometric progression is S n = a ( r n 1 ) r 1 or S n = a ( 1 r n ) 1 r S_n = \dfrac{a(r^n-1)}{r-1} \space \text{or} \space S_n = \dfrac{a(1-r^n)}{1-r} , where a a is the first term of the GP, r r be the common ratio, S n S_n be the sum of the first n n -terms of a GP.

Given that S 3 = a ( r 3 1 ) r 1 = 8 . . . ( 1 ) S_3 = \dfrac{a(r^3-1)}{r-1} = 8 \space ...(1)

S 6 = a ( r 6 1 ) r 1 = 12 . . . ( 2 ) S_6 = \dfrac{a(r^6-1)}{r-1} = 12 \space ...(2)

( 1 ) : ( 2 ) (1):(2) gives r 3 1 r 6 1 = 2 3 \dfrac{r^3-1}{r^6-1} = \dfrac{2}{3}

By factoring and dividing, we have

1 r 3 + 1 = 2 3 \dfrac{1}{r^3 +1 } = \dfrac{2}{3}

r 3 + 1 = 3 2 r^3 +1 = \dfrac{3}{2}

r 3 = 1 2 r^3 = \dfrac{1}{2}

r = 1 2 3 0.79 r = \sqrt[3]{ \dfrac{1}{2}} \approx 0.79

Ashish Menon
Apr 21, 2016

Case 1 \text {Case 1} :-
Let the numbers be a r \dfrac {a}{r} , a a and a r ar

a r + a + a r = 8 \dfrac {a}{r} + a + ar = 8
a + a r + a r 2 r = 8 \dfrac {a + ar + ar^2}{r} = 8
a ( 1 + r + r 2 ) = 8 r a(1+r+r^2) = 8r
Let ( 1 + r + r 2 ) (1 + r + r^2) be x x a x = 8 r \therefore ax = 8r
a = 8 r x 1 a = \dfrac {8r}{x} \rightarrow \boxed {1}



Case 2 \text {Case 2} :-
Let the numbers be a r 2 \dfrac {a}{r^2} , a r \dfrac {a}{r} , a a , a r ar , a r 2 ar^2 and a r 3 ar^3

a r 2 \dfrac {a}{r^2} + a r \dfrac {a}{r} + a a + a r ar + a r 2 ar^2 + a r 3 ar^3 = 12)
a + a r + a r 2 + a r 3 + a r 4 + a r 5 r 2 = 12 \dfrac {a + ar + ar^2 + ar^3 + ar^4 + ar^5}{r^2} = 12
a ( 1 + r + r 2 + r 3 + r 4 + r 5 ) = 12 r 2 a(1 + r + r^2 + r^3 + r^4 + r^5) = 12r^2 Substituting the value of x x we get:-
a ( x + x r 3 ) = 12 r 2 a(x + xr^3) = 12r^2
a = 12 r 2 x ( 1 + r 3 ) 2 a = \dfrac{12r^2}{x(1+r^3)} \rightarrow \boxed {2}

From 1 \boxed {1} and 2 \boxed {2} we get:-
8 r x = 12 r 2 x ( 1 + r 3 ) \dfrac {8r}{x} = \dfrac {12r^2}{x(1+r^3)}
2 + 2 r 3 = 3 2 + 2r^3 = 3
2 r 3 = 1 2r^3 = 1
r 3 = 1 2 r^3 = \dfrac {1}{2}
r = 1 2 3 r = \sqrt[3]{\dfrac {1}{2}}
r 0.79 r \approx \boxed{0.79} .

Joy Patel
Mar 30, 2017

a(r^3-1)/(r-1)=8 ---------(1) a(r^6-1)/(r-1)=12------(2) Simplifying L.H.S of eq(2) we get a{(r^3-1)(r^3+1)/(r-1)}=8(r^3+1)=12 r^3= (12/8)-1=0.5 Now r = cubroot of 0.5 =0.79

Cheers!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...