A problem of infinite series

Algebra Level 3

1 3 2 + 1 + 1 4 2 + 2 + 1 5 2 + 3 + + 1 ( n + 2 ) 2 + n + = ? \large \dfrac{1}{3^2+1}+\dfrac{1}{4^2+2}+\dfrac{1}{5^2+3}+ \cdots + \dfrac1{(n+2)^2 + n} + \cdots = \, ?

13 36 \frac{13}{36} 12 24 \frac{12}{24} 8 16 \frac{8}{16} 10 20 \frac{10}{20}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Johannes Reyes
Nov 5, 2016

Assume that it is an infinite sum.

k = 1 1 ( k + 2 ) 2 + k = k = 1 1 k 2 + 5 k + 4 = k = 1 1 ( k + 1 ) ( k + 4 ) = 1 3 k = 1 3 ( k + 1 ) ( k + 4 ) \displaystyle\sum_{k=1}^{\infty} \frac{1}{(k+2)^2+k}= \displaystyle\sum_{k=1}^{\infty} \frac{1}{k^2+5k+4}= \displaystyle\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+4)}= \frac{1}{3} \displaystyle\sum_{k=1}^{\infty} \frac{3}{(k+1)(k+4)}

= 1 3 k = 1 ( k + 4 ) ( k + 1 ) ( k + 1 ) ( k + 4 ) = 1 3 ( k = 1 1 ( k + 1 ) k = 1 1 ( k + 4 ) ) =\frac{1}{3} \displaystyle\sum_{k=1}^{\infty} \frac{(k+4)-(k+1)}{(k+1)(k+4)} = \frac{1}{3} ( \sum_{k=1}^{\infty} \frac{1}{(k+1)} - \sum_{k=1}^{\infty} \frac{1}{(k+4)} )

= 1 3 ( 1 2 + 1 3 + 1 4 ) = 13 36 = \frac{1}{3} \cdot (\frac{1}{2}+\frac{1}{3}+\frac{1}{4} )= \frac{13}{36}

James Christian
Nov 5, 2016

The sum is n = 1 1 ( n + 2 ) 2 + n \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{(n+2)^2 + n} , or n = 1 1 n 2 + 5 n + 4 \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^2 + 5n + 4} . Note that n 2 + 5 n + 4 = ( n + 1 ) ( n + 4 ) n^2 + 5n + 4 = (n+1)(n+4) , we could use the method of partial fractions in order to find that 1 n 2 + 5 n + 4 = 1 3 ( 1 n + 1 1 n + 4 ) \dfrac{1}{n^2+5n+4} = \dfrac{1}{3} \left(\dfrac{1}{n+1} - \dfrac{1}{n+4}\right) , so

n = 1 1 n 2 + 5 n + 4 = 1 3 n = 1 ( 1 n + 1 1 n + 4 ) = 1 3 ( 1 2 1 5 + 1 3 1 6 + 1 4 1 7 + 1 5 1 8 + 1 6 1 9 + ) \begin{aligned} \sum_{n=1}^\infty \dfrac{1}{n^2+5n+4} &= \dfrac13 \sum_{n=1}^\infty \left(\dfrac{1}{n+1} - \dfrac{1}{n+4}\right) \\ &= \dfrac13\left(\dfrac12 - \dfrac15 + \dfrac13 - \dfrac16 + \dfrac14 - \dfrac17 + \dfrac15 - \dfrac18 +\dfrac16 - \dfrac19 + \ldots\right) \end{aligned}

Some of the terms cancel, leaving only 1 3 ( 1 2 + 1 3 + 1 4 ) = 13 36 \dfrac13\left(\dfrac12 + \dfrac13 + \dfrac14\right) = \dfrac{13}{36}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...