A Problem on Limit from an old JEE

Calculus Level 4

Evaluate the following limit lim n 1 n r = 1 2 n r n 2 + r 2 \lim _{ n\to \infty }{ \frac { 1 }{ n } \sum _{ r=1 }^{ 2n }{ \frac { r }{ \sqrt { { n }^{ 2 }+{ r }^{ 2 } } } } }


The answer is 1.2360679775.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Donglin Loo
May 15, 2018

lim n 1 n r = 1 2 n r r 2 + n 2 = l i m n 1 n r = 1 2 n r n r 2 n 2 + 1 \lim_{n\to\infty} \cfrac{1}{n} \sum_{r=1}^{2n}\cfrac{r}{\sqrt{r^{2}+n^{2}} } =lim_{n\to\infty} \cfrac{1}{n} \sum_{r=1}^{2n}\cfrac{\cfrac{r} {n}}{\sqrt{\cfrac{r^{2}} {n^{2}}+1}} According to Riemann's integral, l i m n 1 n r = 1 2 n r n r 2 n 2 + 1 = 0 2 x 1 + x 2 d x = 1 2 0 2 2 x 1 + x 2 d x lim_{n\to\infty}\cfrac{1}{n}\sum_{r=1}^{2n}\cfrac{\cfrac{r}{n}}{\sqrt{\cfrac{r^{2}}{n^{2}}+1}}=\int_{0}^{2} \cfrac{x} {\sqrt{1+x^{2}}} dx=\cfrac{1} {2} \int_{0}^{2} \cfrac{2x} {\sqrt{1+x^{2}}}dx

Let y = x 2 y=x^{2}

1 2 0 2 2 x 1 + x 2 d x = 1 2 0 4 1 1 + y d y = [ 1 + y ] 0 4 = 5 1 \cfrac{1} {2} \int_{0}^{2} \cfrac{2x} {\sqrt{1+x^{2}}} dx=\cfrac{1} {2} \int_{0}^{4} \cfrac{1} {\sqrt{1 +y}}dy =[\sqrt{1+y}]_{0}^{4}=\sqrt{5} - 1 Hence, the required value of the original limit is 5 1 \sqrt{5}-1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...