A problem to start my 2018

Algebra Level 3

Evaluate

2018 × 2017 2017 × 2016 + 2016 × 2015 2015 × 2014 + . . . + 4 × 3 3 × 2 + 2 × 1 = ? 2018 \times 2017 - 2017 \times 2016 + 2016 \times 2015 - 2015 \times 2014 + . . . + 4 \times 3 - 3 \times 2 + 2 \times 1 = ?


The answer is 2036162.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rewrite the sum as follows:

S = 1 × 2 2 × 3 + 3 × 4 4 × 5 + 5 × 6 2016 × 2017 + 2017 × 2018 = 1 × 2 + 3 ( 4 2 ) + 5 ( 6 4 ) + + 2017 ( 2018 2016 ) = 1 × 2 + 3 × 2 + 5 × 2 + + 2017 × 2 = 2 ( 1 a = + 3 + 5 + + 2017 l = n = 1009 terms ) Sum of AP: S = n ( a + l ) 2 = 2 × 1009 ( 1 + 2017 ) 2 = 2036162 \begin{aligned} S & = 1 \times 2 - 2 \times 3 + 3 \times 4 - 4 \times 5 + 5 \times 6 - \cdots - 2016 \times 2017 + 2017 \times 2018 \\ & = 1 \times 2 + 3(4-2) + 5(6-4) + \cdots + 2017(2018-2016) \\ & = 1 \times 2 + 3 \times 2 + 5 \times 2 + \cdots + 2017 \times 2 \\ & = 2 (\underbrace{\overbrace{1}^{\color{#3D99F6}a=}+3+5+\cdots+\overbrace{2017}^{\color{#3D99F6}l=}}_{\color{#3D99F6}n=1009 \text{ terms}}) & \small \color{#3D99F6} \text{Sum of AP: } S = \frac {n(a+l)}2 \\ & = 2 \times \frac {1009(1+2017)}2 \\ & = \boxed{2036162} \end{aligned}

Congratulations! You figured it out! :)

Math Nerd 1729 - 3 years, 5 months ago
Stephen Mellor
Jan 2, 2018

Let S = 2018 × 2017 2017 × 2016 + 2016 × 2015 2015 × 2014 + . . . + 4 × 3 3 × 2 + 2 × 1 S = 2018 \times 2017 - 2017 \times 2016 + 2016 \times 2015 - 2015 \times 2014 + . . . + 4 \times 3 - 3 \times 2 + 2 \times 1

S = 2018 × 2017 2017 × 2016 + 2016 × 2015 2015 × 2014 + . . . + 4 × 3 3 × 2 + 2 × 1 S = 2018 \times 2017 - 2017 \times 2016 + 2016 \times 2015 - 2015 \times 2014 + . . . + 4 \times 3 - 3 \times 2 + 2 \times 1 S = 2017 × ( 2018 2016 ) + 2015 × ( 2016 2014 ) + . . . + 3 × ( 4 2 ) + 1 × ( 2 0 ) S = 2017 \times (2018 - 2016) + 2015 \times (2016 - 2014) + . . . + 3 \times (4 - 2) + 1 \times (2 - 0) S = 2017 × 2 + 2015 × 2 + . . . + 3 × 2 + 1 × 2 S = 2017 \times 2 + 2015 \times 2 + . . . + 3 \times 2 + 1 \times 2 S = 2 × ( 2017 + 2015 + 2013 + . . . + 5 + 3 + 1 ) S = 2 \times (2017 + 2015 + 2013 + ... + 5 + 3 + 1) S = 2 × ( ( 2017 + 1 ) + ( 2015 + 3 ) + . . . + ( 1011 + 1007 ) + ( 1009 ) ) S = 2 \times ((2017 + 1) + (2015 + 3) + ... + (1011 + 1007) + (1009)) S = 2 × ( 504 × 2018 + 1009 ) S = 2 \times (504 \times 2018 + 1009) S = 2 × 1018081 S = 2 \times 1018081 S = 2036162 S = 2036162

Good job! Congratulations on being the first one to solve this problem :)

Math Nerd 1729 - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...