This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let N = 1 0 7 2 0 1 7 . We need to find N m o d 1 0 0 0 0 . Since g cd ( 1 0 7 , 1 0 0 0 0 ) = 1 , we can apply the Euler's theorem and Carmichael's lambda function λ ( ⋅ ) as follows:
N ≡ 1 0 7 2 0 1 7 m o d λ ( 1 0 0 0 0 ) (mod 10000) Since λ ( 1 0 0 0 0 ) = 5 0 0 ≡ 1 0 7 2 0 1 7 m o d 5 0 0 (mod 10000) ≡ 1 0 7 1 7 (mod 10000) ≡ ( 1 0 0 + 7 ) 1 7 (mod 10000) ≡ ( 1 0 0 1 7 + ⋯ + 2 1 7 × 1 6 × 1 0 0 2 × 7 1 5 + 1 7 × 1 0 0 × 7 1 6 + 7 1 7 ) (mod 10000) ≡ 1 7 0 7 × 7 1 6 (mod 10000) ≡ 1 7 0 7 ( 5 0 − 1 ) 8 (mod 10000) ≡ 1 7 0 7 ( 5 0 8 − ⋯ + 7 0 0 0 0 − 4 0 0 + 1 ) (mod 10000) ≡ 1 7 0 7 ( − 3 9 9 ) (mod 10000) ≡ − 1 0 9 3 (mod 10000) ≡ 8 9 0 7 (mod 10000)
Problem Loading...
Note Loading...
Set Loading...
Note that 1 0 7 2 0 1 7 ≡ 7 2 0 1 7 + 2 0 1 7 × 1 0 0 × 7 2 0 1 6 ≡ 7 2 0 1 7 + 1 7 0 0 × 7 2 0 1 6 ( m o d 1 0 0 0 0 ) Now 7 2 ≡ 1 ( m o d 4 ) and 7 2 ≡ − 1 ( m o d 5 ) , so that 7 4 ≡ 1 ( m o d 5 ) and 7 2 0 ≡ 1 ( m o d 2 5 ) . Thus 7 2 0 ≡ 1 ( m o d 1 0 0 ) , and hence 1 0 7 2 0 1 7 ≡ 7 2 0 1 7 + 1 7 0 0 × 7 1 6 ( m o d 1 0 0 0 0 ) Moreover 7 2 ≡ 1 ( m o d 1 6 ) and 7 1 0 0 ≡ 1 ( m o d 1 2 5 ) and 7 5 0 0 ≡ 1 ( m o d 6 2 5 ) , so that 7 5 0 0 ≡ 1 ( m o d 1 0 0 0 0 ) , and hence 1 0 7 2 0 1 7 ≡ 7 1 7 + 1 7 0 0 × 7 6 ( m o d 1 0 0 0 0 ) This last expression can be calculated by hand, and so 1 0 7 2 0 1 7 ≡ 8 9 0 7 ( m o d 1 0 0 0 0 ) .