A Question of Area

Geometry Level pending

In A B C , E D \triangle ABC, ED is the perpendicular bisector of C B CB and E F EF bisects A F C \angle AFC . A F AF and F B FB have lengths 3 3 and 4 4 respectively. Express the area of A B C \triangle ABC as a b c \dfrac{a\sqrt b}{c} , where a a , b b , and c c are positive integers and b b is square-free, and submit a + b + c a+b+c .


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 12, 2021

We note that B D E \triangle BDE and C D E \triangle CDE are congruence. Hence B E = C E BE = CE . Let E F A = C F E = θ \angle EFA = \angle CFE = \theta and t = tan θ t = \tan \theta . Then A E = 3 tan θ = 3 t AE = 3 \tan \theta = 3t and A C = 3 tan 2 θ = 6 t 1 t 2 AC = 3 \tan 2\theta = \dfrac {6t}{1-t^2} . By Pythagorean theorem ,

B E 2 = A E 2 + A B 2 = ( 3 t ) 2 + 7 2 = 9 t 2 + 49 B E = 9 t 2 + 49 Since B E = C E = A C A E A C A E = 9 t 2 + 49 6 t 1 t 2 3 t = 9 t 2 + 49 3 t ( 1 + t 2 ) 1 t 2 = 9 t 2 + 49 3 t ( 1 + t 2 ) = ( 1 t 2 ) 9 t 2 + 49 Squaring both sides 9 t 6 + 18 t 4 + 9 t 2 = 9 t 6 + 31 t 4 89 t 2 + 49 13 t 4 98 t 2 + 49 = 0 ( t 2 7 ) ( 13 t 2 7 ) = 0 t = ± 7 , ± 7 13 Since θ < 4 5 t = 7 13 \begin{aligned} BE^2 & = AE^2 + AB^2 = (3t)^2 + 7^2 = 9t^2 + 49 \\ \implies BE & = \sqrt{9t^2+49} & \small \blue{\text{Since }BE=CE=AC-AE} \\ AC - AE & = \sqrt{9t^2+49} \\ \frac {6t}{1-t^2} - 3t & = \sqrt{9t^2+49} \\ \frac {3t(1+t^2)}{1-t^2} & = \sqrt{9t^2+49} \\ 3t(1+t^2) & = (1-t^2)\sqrt{9t^2+49} & \small \blue{\text{Squaring both sides}} \\ 9t^6 + 18t^4 + 9t^2 & = 9t^6+31t^4-89t^2+49 \\ 13t^4 - 98t^2 + 49 & = 0 \\ (t^2-7)(13t^2-7) & = 0 \\ t & = \pm \sqrt 7, \pm \sqrt{\frac 7{13}} & \small \blue{\text{Since }\theta < 45^\circ} \\ \implies t & = \sqrt{\frac 7{13}} \end{aligned}

The area of A B C \triangle ABC , [ A B C ] = 1 2 A B A C = 1 2 7 6 t 1 t 2 = 21 7 13 1 7 13 = 7 91 2 [ABC] = \dfrac 12 AB \cdot AC = \dfrac 12 \cdot 7 \cdot \dfrac {6t}{1-t^2} = \dfrac {21\sqrt{\frac 7{13}}}{1-\frac 7{13}} = \dfrac {7\sqrt{91}}2 . Therefore a + b + c = 7 + 91 + 2 = 100 a+b+c = 7+91+2 = \boxed{100} .

Pi Han Goh
Mar 12, 2021

Plot this figure on the Cartesian plane with coordinates A ( 0 , 0 ) , F ( 3 , 0 ) , B ( 7 , 0 ) , E ( 0 , k ) , C ( 0 , h ) , A(0,0), F(3,0), B(7,0), E(0,k), C(0,h), where h > k > 0. h > k > 0.

Since E D ED is the perpendicular bisector of C B CB , then D ( 7 2 , h 2 ) . D( \tfrac72, \tfrac h2) .

The equation of the straight line C B CB is x 7 + y h = 1 y = h 7 x + h \dfrac x7 + \dfrac yh = 1 \Leftrightarrow y = -\dfrac h7 x + h . So its gradient m C B = h 7 m_{CB} = -\dfrac h7 .

Also the gradient of the straight line E D ED is m E D = k h 2 0 7 2 = h 2 k 7 m_{ED} = \dfrac{k- \frac h2}{0 - \frac 72} = \dfrac{h - 2k}7 .

Since E D ED and C B CB are perpendicular to each other, m E D m C B = 1 m_{ED} \cdot m_{CB} = -1 , or h 2 k 7 = 7 h (1) \dfrac{h - 2k}7 = \dfrac 7h \tag1

And because E F EF bisects A F C \measuredangle AFC , C F B = E F A tan 1 h 3 = 2 tan 1 k 3 h 3 = tan [ 2 tan 1 k 3 ] = 6 k 9 k 2 h = 18 k 9 k 2 \begin{array} { r c l} \measuredangle CFB &=& \measuredangle EFA \\ \\ \tan^{-1} \dfrac h3 &=& 2 \cdot \tan^{-1} \dfrac k3 \\ \\ \dfrac h3 &=& \tan \left [ 2 \cdot \tan^{-1} \dfrac k3 \right ] = \dfrac{6k}{9-k^2} \\ \\ h &=& \dfrac{18k}{9-k^2} \end{array}

Substitute h h into ( 1 ) (1) and solve the equation yields ( h , k ) = ( ± 7 , 3 7 ) , ( ± 91 , 63 13 ) . (h,k) = (\pm \sqrt7, \mp 3\sqrt7 ) , \left (\pm \sqrt{91}, \mp \sqrt{\dfrac{63}{13}} \right).

But since h > k > 0 h>k > 0 , then the only solution is ( h , k ) = ( 91 , 63 13 ) (h,k) = \left (\sqrt{91}, \sqrt{\dfrac{63}{13}} \right) .

Therefore, the area of the triangle A B C ABC is 1 2 7 h = 7 91 2 \dfrac12 \cdot 7 \cdot h = \dfrac{7 \sqrt{91}}2 . The answer is 7 + 91 + 2 = 100 . 7 + 91 + 2 = \boxed{100}.

Fletcher Mattox
Mar 12, 2021

Let's find an algebraic expression for the area. If A F = x AF = x and F B = y FB = y , then the following program suggests that

A B C = ( x + y ) 3 x 2 + 4 x y + y 2 2 = 7 9 1 2 7 + 91 + 2 = 100 \triangle ABC = \dfrac{(x+y)\sqrt {3x^2 + 4xy + y^2}}{2} = \dfrac{7\sqrt 91}{2} \implies 7+91+2 = \boxed{100}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
"""
diagram: https://www.geogebra.org/m/atn4hkzy

let AF = x, FB = y, and C = (0, ht) where 'ht' is the triangle height.
The strategy is to allow E1 and E2 to be different expressions for E, then equate them and solve for the area.
"""

from sympy import *
x, y, ht = symbols(('x', 'y', 'ht'))

A = Point(0, 0)
B = Point(x + y, 0)
C = Point(0, ht)

F = Point(x, 0)
D = Segment(B, C).midpoint

t = Triangle(A, F, C)
bisector = t.bisectors()[F]
normal = Line(B, C).perpendicular_line(D)
E1 = normal.intersection(Line(A, C))[0]
E2 = bisector.points[1]

ht = solve(E1.y - E2.y, ht)[1]    # set E1 = E2 = E
area = ht*(x + y)/2

print(area)
print(area.subs(x, 3).subs(y, 4))

1
2
(x + y)*sqrt(3*x**2 + 4*x*y + y**2)/2
7*sqrt(91)/2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...