Fun with 2015 and 2016!!

Calculus Level 4

π / 2 π / 2 1 201 5 x + 1 sin 2016 x sin 2016 x + cos 2016 x d x = ? \displaystyle \int_{ - \pi /2}^{\pi /2} \dfrac1{2015^{x} + 1}\cdot \dfrac {\sin^{2016}x}{\sin^{2016}x + \cos^{2016}x} \, dx = \, ?

Give your answer up to 3 decimal places


The answer is 0.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 2, 2016

The substitution x = u x = -u tells us that I = 1 2 π 1 2 π 1 201 5 x + 1 sin 2016 x sin 2016 x + cos 2016 x d x = 1 2 π 1 2 π 201 5 u 201 5 u + 1 sin 2016 u sin 2016 u + cos 2016 u d u , I \; = \; \int_{-\frac12\pi}^{\frac12\pi} \frac{1}{2015^x+1} \frac{\sin^{2016}x}{\sin^{2016}x + \cos^{2016}x}\,dx \; = \; \int_{-\frac12\pi}^{\frac12\pi} \frac{2015^u}{2015^u + 1} \frac{\sin^{2016}u}{\sin^{2016}u + \cos^{2016}u}\,du \;, so that I = 1 2 1 2 π 1 2 π sin 2016 x sin 2016 x + cos 2016 x d x = 0 1 2 π sin 2016 x sin 2016 x + cos 2016 x d x . I \; = \; \tfrac12 \int_{-\frac12\pi}^{\frac12\pi} \frac{\sin^{2016}x}{\sin^{2016}x + \cos^{2016}x}\,dx \; = \; \int_0^{\frac12\pi} \frac{\sin^{2016}x}{\sin^{2016}x + \cos^{2016}x}\,dx \;. The substitution x = 1 2 π y x = \tfrac12\pi - y now gives I = 0 1 2 π cos 2016 y sin 2016 y + cos 2016 y d y , I \; = \; \int_0^{\frac12\pi} \frac{\cos^{2016}y}{\sin^{2016}y + \cos^{2016}y}\,dy \;, so that I = 1 2 0 1 2 π d x = 1 4 π = 0.7853981634 . I \; = \; \tfrac12 \int_0^{\frac12\pi} \,dx \; = \; \tfrac14\pi \; = \; \boxed{0.7853981634} \;.

Yes!! Did it the same way. Can there be an another method?

Saarthak Marathe - 5 years, 2 months ago

Log in to reply

There isn't.

Pi Han Goh - 5 years, 2 months ago

Log in to reply

Okay. Thank you !!

Saarthak Marathe - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...