A quite compact maxima problem

Calculus Level 4

f ( x ) = cos 2 ( cos x ) + sin 2 ( sin x ) \large f (x) =\cos ^{ 2 }{ (\cos { x) } } +\sin ^{ 2 }{ (\sin { x) } }

For any real x x , find the maximum value of the function f ( x ) f(x) given above.


The answer is 1.7081.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2018

f ( x ) = cos 2 ( cos x ) + sin 2 ( sin x ) Differentiat both sides w.r.t. x . f ( x ) = 2 sin ( cos x ) cos ( cos x ) sin x + 2 sin ( sin x ) cos ( sin x ) cos x \begin{aligned} f(x) & = \cos^2 (\cos x) + \sin^2 (\sin x) & \small \color{#3D99F6} \text{Differentiat both sides w.r.t. }x. \\ f'(x) & = 2\sin (\cos x) \cos (\cos x) \sin x + 2\sin (\sin x) \cos (\sin x) \cos x \end{aligned}

We note that f ( x ) = 0 f'(x) = 0 , when sin x = 0 x = 0 \sin x = 0 \implies x=0 or cos x = 0 x = π 2 \cos x = 0 \implies x = \frac \pi 2 . Now let us check the values of f ( x ) f''(x) , when x = 0 x=0 and x = π 2 x = \frac \pi 2 .

f ( x ) = 2 sin ( cos x ) cos ( cos x ) sin x + 2 sin ( sin x ) cos ( sin x ) cos x = sin ( 2 cos x ) sin x + sin ( 2 sin x ) cos x f ( x ) = 2 sin 2 x cos ( 2 cos x ) + cos x sin ( 2 cos x ) + 2 cos 2 x cos ( 2 sin x ) sin x sin ( 2 sin x ) \begin{aligned} f'(x) & = 2\sin (\cos x) \cos (\cos x) \sin x + 2\sin (\sin x) \cos (\sin x) \cos x \\ & = \sin (2\cos x)\sin x + \sin (2\sin x) \cos x \\ f''(x) & = -2 \sin^2 x \cos (2\cos x) + \cos x \sin (2\cos x) + 2\cos^2 x \cos (2\sin x) - \sin x \sin (2\sin x) \end{aligned}

{ f ( 0 ) = sin 2 + 2 > 0 f ( 0 ) is a minimum. f ( π 2 ) = 2 sin 2 < 0 f ( π 2 ) is a maximum. \begin{cases} f''(0) = \sin 2 + 2 > 0 & \small \color{#3D99F6} \implies f(0) \text{ is a minimum.} \\ f''\left(\frac \pi 2\right) = -2 - \sin 2 < 0 & \small \color{#3D99F6} \implies f\left(\frac \pi 2\right) \text{ is a maximum.} \end{cases}

Therefore, max ( f ( x ) ) = f ( π 2 ) = cos 2 ( cos π 2 ) + sin 2 ( sin π 2 ) = cos 2 0 + sin 2 1 1.708 \max (f(x)) = f\left(\frac \pi 2\right) = \cos^2 \left(\cos \frac \pi 2\right) + \sin^2 \left(\sin \frac \pi 2\right) = \cos^2 0 + \sin^2 1 \approx \boxed{1.708} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...