A rad problem

Algebra Level 4

16 + 31 5 + 13 12 1 ( 9 31 20 ) 2 \large \sqrt{\frac{16+\sqrt{31}}5 } + \sqrt{13 - 12\sqrt{1 - \left( \frac{9-\sqrt{31}}{20} \right)^2 } }

If the above expression can be represented in the form x \sqrt{x} , then find x x , where x x is square free.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 31, 2015

16 + 31 5 + 13 12 1 ( 9 31 20 ) 2 = 32 + 2 31 10 + 13 12 ( 1 + 9 31 20 ) ( 1 9 31 20 ) = ( 1 + 31 ) 2 10 + 13 12 ( 29 31 ) ( 11 + 31 ) 400 = 1 + 31 10 + 13 12 288 + 18 31 400 = 1 + 31 10 + 65 3 ( 3 + 3 31 ) 2 5 = 1 + 31 10 + 56 9 31 5 = 1 + 31 10 + 112 18 31 10 = 1 + 31 10 + ( 9 31 ) 2 10 = 1 + 31 10 + 9 31 10 = 10 10 = 10 \displaystyle \sqrt{\frac{16+\sqrt{31}}{5}} + \sqrt{13-12\sqrt{1-\left( \frac{9-\sqrt{31}}{20} \right)^2}} \\ \displaystyle = \sqrt{\frac{32+2\sqrt{31}}{10}} + \sqrt{13-12\sqrt{\left( 1 + \frac{9-\sqrt{31}}{20} \right) \left( 1 - \frac{9-\sqrt{31}}{20} \right)}} \\ \displaystyle = \sqrt{\frac{(1+\sqrt{31})^2}{10}} + \sqrt{13-12\sqrt{\frac{(29-\sqrt{31})(11+\sqrt{31})}{400}}} \\ \displaystyle = \frac{1+\sqrt{31}}{\sqrt{10}} + \sqrt{13-12\sqrt{\frac{288+18\sqrt{31}}{400}}} \\ \displaystyle = \frac{1+\sqrt{31}}{\sqrt{10}} + \sqrt{\frac{65- 3 \sqrt{\left(3 + 3 \sqrt{31} \right)^2}}{5}} \\ \displaystyle = \frac{1+\sqrt{31}}{\sqrt{10}} + \sqrt{\frac{56 - 9 \sqrt{31}}{5}} \\ \displaystyle = \frac{1+\sqrt{31}}{\sqrt{10}} + \sqrt{\frac{112 - 18 \sqrt{31}}{10}} \\ \displaystyle = \frac{1+\sqrt{31}}{\sqrt{10}} + \sqrt{\frac{\left(9 - \sqrt{31} \right)^2}{10}} \\ \displaystyle = \frac{1+\sqrt{31}}{\sqrt{10}} + \frac{9 - \sqrt{31}}{\sqrt{10}} = \frac{10}{\sqrt{10}} = \boxed{\sqrt{10}}

Moderator note:

Very creative manipulation of algebraic terms!

For clarity, can you explain how you know that you should manipulate these as such?

  1. 288 + 18 31 = ( 3 + 3 31 ) 2 288 + 18\sqrt{31} = (3+3\sqrt{31})^2

  2. 56 9 31 5 = 112 18 31 10 = ( 9 31 ) 2 10 \large\frac{56-9\sqrt{31}}5 = \frac{112 - 18\sqrt{31}}{10} = \frac{(9-\sqrt{31})^2}{10}

  3. 16 + 31 5 = 32 + 2 31 10 = ( 1 + 31 ) 2 10 \large\frac{16+\sqrt{31}}5 = \frac{32 + 2\sqrt{31}}{10} = \frac{(1+\sqrt{31})^2}{10}

Lu Chee Ket
Oct 17, 2015

(b^2 - 4 a c) as square of whole number as the proper way. However, by using calculator, value for Sqrt (10) is found by a square. Therefore x = 10 is found by technology without hard.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...