A Radical Reciprocation

Algebra Level 4

1 1 + 2 + 1 2 + 3 + 1 3 + 4 + + 1 n + n + 1 \frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} +\cdots + \frac{1}{\sqrt{n}+\sqrt{n+1}}

Find the sum of all values of n n , 1 n 100 1 \leq n \leq 100 , for which the expression above is rational.


The answer is 375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 23, 2016

S = 1 1 + 2 + 1 2 + 3 + 1 3 + 4 + . . . + 1 n + n + 1 = 1 + 2 ( 1 + 2 ) ( 1 + 2 ) + 2 + 3 ( 2 + 3 ) ( 2 + 3 ) + 3 + 4 ( 3 + 4 ) ( 3 + 4 ) + . . . + n + n + 1 ( n + n + 1 ) ( n + n + 1 ) = 1 + 2 1 + 2 + 3 1 + 3 + 4 1 + . . . + n + n + 1 1 = 1 + n + 1 S = n + 1 1 \begin{aligned} S & = \frac 1{\sqrt 1+\sqrt 2} + \frac 1{\sqrt 2+\sqrt 3} + \frac 1{\sqrt 3+\sqrt 4} + ... + \frac 1{\sqrt n+\sqrt {n+1}} \\ & = \small \frac {-\sqrt 1+\sqrt 2}{(\sqrt 1+\sqrt 2)(-\sqrt 1+\sqrt 2)} + \frac {-\sqrt 2+\sqrt 3}{(\sqrt 2+\sqrt 3)(-\sqrt 2+\sqrt 3)} + \frac {-\sqrt 3+\sqrt 4}{(\sqrt 3+\sqrt 4)(-\sqrt 3+\sqrt 4)} + ... +\frac {-\sqrt n+\sqrt {n+1}}{(\sqrt n+\sqrt {n+1})(-\sqrt n+\sqrt {n+1})} \\ & = \frac {-\sqrt 1+\sqrt 2}1 + \frac {-\sqrt 2+\sqrt 3}1 + \frac {-\sqrt 3+\sqrt 4}1 + ... +\frac {-\sqrt n+\sqrt {n+1}}1 \\ & = -\sqrt 1+\sqrt {n+1} \\ \implies S & = \sqrt {n+1} - 1 \end{aligned}

So S S is rational when n + 1 \sqrt {n+1} is a positive integer or n + 1 n+1 , a perfect square 4 \ge 4 . Therefore, the sum of values of required n n is as follows:

S n = k = 2 10 ( k 2 1 ) = 10 ( 11 ) ( 21 ) 6 1 9 = 375 \begin{aligned} S_n & = \sum_{k=2}^{10} (k^2-1) \\ & = \frac {10(11)(21)}6 - 1 - 9 \\ & = \boxed{375} \end{aligned}

Timothy Ong
Oct 22, 2016

Note that 1 n + n + 1 = n + 1 n ( n + n + 1 ) ( n + 1 n ) \frac{1}{\sqrt{n}+\sqrt{n+1}} = \frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n}+\sqrt{n+1})(\sqrt{n+1}-\sqrt{n})} = n + 1 n = \sqrt{n+1} - \sqrt{n}

So the series is equivalent to n + 1 1 \sqrt{n+1} -1 and is rational iff n + 1 = x 2 n+1=x^{2} for x 2 : 1 x 2 100 x^{2}: 1 \leq x^{2} \leq 100

The solutions are then [ 3 , 8 , 15 , 24 , 35 , 48 , 63 , 80 , 99 ] [ 3,8,15,24,35,48,63,80,99] which gives a sum of 375 375

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...