A random trig question?

Geometry Level 3

Given that sin x + sin 2 x + sin 3 x = 1 \sin x + \sin^2 x + \sin^3 x=1 , find the value of cos 6 x 4 cos 4 x + 8 cos 2 x . \cos ^6 x - 4\cos ^4 x +8 \cos ^2 x.

5 5 3 3 4 4 1 1 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

ChengYiin Ong
Jan 14, 2021

The answer is 4 . \boxed{4}. By manipulating the given equation, we have sin x + sin 2 x + sin 3 x = 1 sin x ( 1 + sin 2 x ) = 1 sin 2 x = cos 2 x sin x ( 2 cos 2 x ) = cos 2 x sin 2 x ( 2 cos 2 x ) 2 = cos 4 x ( 1 cos 2 x ) ( 2 cos 2 x ) 2 = cos 4 x 4 4 cos 2 x + cos 4 x 4 cos 2 x + 4 cos 4 x cos 6 x = cos 4 x cos 6 x 4 cos 4 x + 8 cos 2 x = 4. \begin{aligned} \sin x+\sin^2 x+\sin^3 x =& 1 \\ \sin x(1+\sin^2 x) =& 1-\sin^2 x=\cos^2 x \\ \sin x(2-\cos^2 x) =& \cos ^2 x \\ \sin^2 x(2-\cos^2 x)^2 =& \cos ^4 x \\ (1-\cos^2 x)(2-\cos^2 x)^2 =& \cos^4 x \\ 4-4\cos^2 x+\cos^4 x-4\cos^2 x+4\cos^4 x-\cos^6 x=& \cos^4 x \\ \boxed{\cos^6 x - 4\cos^4 x +8\cos^2 x = 4.} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...