A Rather Limited Integral

Calculus Level 2

Simply solve the limit of this integral for the case when the the constant of integration is equal to zero.

lim x 0 ( 2 x sin ( 1 x ) cos ( 1 x ) ) d x \lim_{x \to 0} \int \left( 2x\sin\left(\frac{1}{x}\right)-\cos\left(\frac{1}{x}\right) \right) dx


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 24, 2019

Similar solution as @John Rozmarynowycz 's

I = ( 2 x sin 1 x cos 1 x ) d x = 2 x sin 1 x d x cos 1 x d x By integration by parts = x 2 sin 1 x + C x 2 ( 1 x 2 cos 1 x ) d x cos 1 x d x where C is the constant of integration = x 2 sin 1 x + C + cos 1 x d x cos 1 x d x = x 2 sin 1 x + C \begin{aligned} I & = \int \left(2x \sin \frac 1x - \cos \frac 1x \right) dx \\ & = {\color{#3D99F6} \int 2x \sin \frac 1x \ dx} - \int \cos \frac 1x \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = {\color{#3D99F6} x^2 \sin \frac 1x + C - \int x^2 \left(- \frac 1{x^2} \cos \frac 1x \right) dx} - \int \cos \frac 1x \ dx & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration} \\ & = x^2 \sin \frac 1x + C + \int \cos \frac 1x \ dx - \int \cos \frac 1x \ dx \\ & = x^2 \sin \frac 1x + C \end{aligned}

Therefore,

lim x 0 I C = 0 = lim x 0 x 2 sin 1 x Note that lim x 0 sin 1 x [ 1 , 1 ] is bounded. = 0 \begin{aligned} \lim_{x \to 0} I \ \bigg|_{C=0} & = \lim_{x \to 0}x^2 \color{#3D99F6} \sin \frac 1x & \small \color{#3D99F6} \text{Note that }\lim_{x \to 0} \sin \frac 1x \in [-1, 1] \text{ is bounded.} \\ & = \boxed 0 \end{aligned}

lim x 0 [ 2 x sin ( 1 x ) cos ( 1 x ) d x ] \lim_{x\to 0} \Bigg[\int 2x\sin\bigg(\frac{1}{x}\bigg)-\cos\bigg(\frac{1}{x}\bigg)dx\Bigg]

lim x 0 [ 2 x sin ( 1 x ) d x cos ( 1 x ) d x ] \lim_{x\to 0} \Bigg[\int 2x\sin\bigg(\frac{1}{x}\bigg)dx - \int\cos\bigg(\frac{1}{x}\bigg)dx\Bigg]

f ( x ) g ( x ) d x = f ( x ) g ( x ) f ( x ) g ( x ) d x \int f(x)g'(x)dx=f(x)g(x)-\int f'(x)g(x)dx

f ( x ) = sin ( 1 x ) and g ( x ) = 2 x f(x)=\sin\bigg(\frac{1}{x}\bigg) \;\text{and}\; g'(x)= 2x

then f ( x ) = cos ( 1 x ) x 2 and g ( x ) = x 2 f'(x)=-\frac{\cos\big(\frac{1}{x}\big)}{x^{2}} \;\text{and}\; g(x)=x^{2}

2 x sin ( 1 x ) d x = x 2 sin ( 1 x ) + C cos ( 1 x ) x 2 x 2 d x \int 2x\sin\bigg(\frac{1}{x}\bigg)dx=x^{2}\sin\bigg(\frac{1}{x}\bigg)+C-\int-\frac{\cos\big(\frac{1}{x}\big)}{x^{2}} x^{2}dx

= x 2 sin ( 1 x ) + C + cos ( 1 x ) d x =x^{2}\sin\bigg(\frac{1}{x}\bigg)+C+\int\cos\bigg(\frac{1}{x}\bigg)dx

implement this expression into the integral and simplify

= lim x 0 [ x 2 sin ( 1 x ) + C + cos ( 1 x ) d x cos ( 1 x ) d x ] =\lim_{x\to 0} \Bigg[x^{2}\sin\bigg(\frac{1}{x}\bigg)+C+\int\cos\bigg(\frac{1}{x}\bigg)dx-\int\cos\bigg(\frac{1}{x}\bigg)dx\Bigg]

= lim x 0 [ x 2 sin ( 1 x ) ] + C =\lim_{x\to 0} \Bigg[x^{2}\sin\bigg(\frac{1}{x}\bigg)\Bigg]+C

the range of values for the sin ( 1 x ) \sin\big(\frac{1}{x}\big) function exists in the interval [-1,1]

1 sin ( 1 x ) 1 -1\leq \sin\bigg(\frac{1}{x}\bigg) \leq 1

multiply the inequality by x 2 x^{2} . All of the values that come from x 2 x^{2} will be greater than or equal to zero, so it is unnecessary to flip any inequality signs.

x 2 x 2 sin ( 1 x ) x 2 -x^{2}\leq x^{2}\sin\bigg(\frac{1}{x}\bigg) \leq x^{2} Next,

lim x 0 x 2 lim x 0 x 2 sin ( 1 x ) lim x 0 x 2 \lim_{x\to 0} -x^{2}\leq \lim_{x\to 0} x^{2}\sin\bigg(\frac{1}{x}\bigg) \leq \lim_{x\to 0}x^{2}

0 lim x 0 x 2 sin ( 1 x ) 0 0\leq\lim_{x\to 0} x^{2}\sin\bigg(\frac{1}{x}\bigg)\leq0

therefore, by use of the squeeze theorem, it can be said that the limit of x 2 sin ( 1 x ) = 0 x^{2}\sin\big(\frac{1}{x}\big)=0

As such, it seems safe to assume that the limit of this integral is equal to zero, or,

lim x 0 [ 2 x sin ( 1 x ) cos ( 1 x ) d x ] = 0 \lim_{x\to 0} \Bigg[\int 2x\sin\bigg(\frac{1}{x}\bigg)-\cos\bigg(\frac{1}{x}\bigg)dx\Bigg]=0

The L a T e x LaTex in front is not needed. Instead of $ ... $ replace them with \ ( ... \ ) (no space between the backslash \ and brackets ().

Chew-Seong Cheong - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...