A rather normal question

Calculus Level 4

Let P P be a point (other than the origin) on the curve y = x 4 y = x^{4} . Let Q Q be the point where the normal line to the given curve at P P intersects the x x -axis.

With point O O being the origin, form the triangle O P Q OPQ . Over all such triangles, what is the minimum value of the ratio of the base length O Q OQ to the height of Δ O P Q \Delta OPQ ?


The answer is 4.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Deepanshu Gupta
Sep 30, 2014

L e t p o i n t P ( x , y ) s o e q u a t i o n o f n o r m a l i s : Y y = d x d y ( X x ) N o w f o r P o i n t Q ( X , 0 ) Y = 0 X = y d y d x + x X = 4 x 7 + x s o Q ( 4 x 7 + x , 0 ) S o H i g h t o f P O Q = y = x 4 A n d B a s e O Q = 4 x 7 + x L e t E = B a s e H i g h t = 4 x 7 + x x 4 = 4 x 3 + 1 x 3 N o w F o r T o M i n i m i z e s E w e u s e F a m o u s i n e q u a l i t y f o r P o s i t i v e v a r i a b l e s i . e ( T o a v o i d C a l c u l u s ) A M G M T a k e T w o c a s e s o n x C a s e 1 : x > 0 4 x 3 + 1 x 3 2 4 x 3 . 1 x 3 E 4 E m i n = 4 C a s e 2 : x < 0 ( 4 x 3 ) + ( 1 x 3 ) 2 ( 4 x 3 ) . ( 1 x 3 ) ( E m i n ) = 4 B u t P h y s i c a l l y E i s t h e R a t i o o f s i d e s S o w e t a k e m o d u l u s o f E E m i n = E m i n = 4 S o r e q u i r e d A n s w e r i s 4 Let\quad point\quad P(x,y)\quad so\quad equation\quad of\quad normal\quad is:\\ Y\quad -\quad y\quad =\quad -\frac { dx }{ dy } (X\quad -\quad x)\\ Now\quad for\quad Point\quad \quad Q(X,0)\quad \\ Y=0\quad \Longrightarrow \quad X=y\frac { dy }{ dx } \quad +\quad x\\ \Longrightarrow X\quad =4{ x }^{ 7 }+x\\ so\quad Q(4{ x }^{ 7 }+x,0)\\ So\quad Hight\quad of\quad \triangle POQ\quad =\quad y\quad =\quad { x }^{ 4 }\\ And\quad Base\quad OQ=4{ x }^{ 7 }+x\\ \\ Let\quad \\ E=\frac { Base }{ Hight } =\quad \frac { 4{ x }^{ 7 }+x }{ { x }^{ 4 } } =\quad 4{ x }^{ 3 }\quad +\quad \frac { 1 }{ { x }^{ 3 } } \\ \\ Now\quad For\quad To\quad Minimizes\quad E\quad we\quad use\quad Famous\\ inequality\quad for\quad Positive\quad variables\quad i.e\\ (To\quad avoid\quad Calculus\quad )\\ \\ AM\quad \ge \quad GM\\ \\ Take\quad Two\quad cases\quad on\quad 'x'\\ Case\quad 1:\quad x\quad >\quad 0\\ \\ \Longrightarrow \frac { 4{ x }^{ 3 }\quad +\quad \frac { 1 }{ { x }^{ 3 } } }{ 2 } \quad \ge \quad \sqrt { 4{ x }^{ 3 }.\quad \frac { 1 }{ { x }^{ 3 } } } \\ \\ \Longrightarrow E\quad \quad \ge \quad 4\\ { \Longrightarrow E }_{ min }=4\\ \\ Case\quad 2:\quad x\quad <\quad 0\\ \\ \frac { (-4{ x }^{ 3 })\quad +\quad (-\frac { 1 }{ { x }^{ 3 } } ) }{ 2 } \quad \ge \quad \sqrt { (-4{ x }^{ 3 }).(-\frac { 1 }{ { x }^{ 3 } } ) } \\ ({ -E }_{ min })\quad =4\\ \\ But\quad Physically\quad E\quad is\quad the\quad Ratio\quad of\quad sides\\ So\quad we\quad take\quad modulus\quad of\quad 'E'\\ \\ \Longrightarrow \quad \left| { -E }_{ min } \right| =\left| { E }_{ min } \right| =4\\ \\ So\quad required\quad Answer\quad is\quad 4\\ .

Note: You don't need to solve These Two cases. Because By Logically thinking we conclude that There are Two such Triangles Possible for given condition. One in 1st quadrant and other in 2nd Quadrant. Both gives Same Minima so we have To calculate only For one case i.e. x>0 directly By AM-GM inequality for positive variables.

@Deepanshu Gupta Exactly the same!!!! :)

Aaghaz Mahajan - 3 years, 3 months ago

Let P P have coordinates ( p , p 4 ) (p,p^{4}) . (We can assume without loss of generality that p > 0 p \gt 0 , since whatever result we find with P P in the first quadrant will be the same with P P in the second quadrant.) The slope of the tangent line to the curve y = x 4 y = x^{4} at P P will be 4 p 3 4p^{3} , and thus the equation of the normal line to the curve at P P will be

y p 4 = ( 1 4 p 3 ) ( x p ) y - p^{4} = (-\frac{1}{4p^{3}})(x - p) .

To find point Q Q we substitute y = 0 y = 0 to find that that the x x -coordinate of Q Q is x = 4 p 7 + p x = 4p^{7} + p . The ratio R R of O Q OQ to the height of Δ O P Q \Delta OPQ is then

R = 4 p 7 + p p 4 = 4 p 3 + 1 p 3 R = \dfrac{4p^{7} + p}{p^{4}} = 4p^{3} + \dfrac{1}{p^{3}} .

Now d R d p = 12 p 2 3 p 4 = 0 \dfrac{dR}{dp} = 12p^{2} - \dfrac{3}{p^{4}} = 0 when p 6 = 1 4 p 3 = 1 2 p^{6} = \dfrac{1}{4} \Longrightarrow p^{3} = \dfrac{1}{2} .

This gives a minimum value for R R of 4 1 2 + 1 1 2 = 4 4*\dfrac{1}{2} + \dfrac{1}{\frac{1}{2}} = \boxed{4} .

(Note that we know this will be the minimum since d 2 R d p 2 > 0 \frac{d^{2}R}{dp^{2}} \gt 0 for p > 0 p \gt 0 ).

Michael Mendrin
Sep 28, 2014

That's interesting, Δ O P Q \Delta OPQ forms an isosceles triangle with base angles of 30 30 degrees.

That is interesting, although I'm getting a different value for the base angles. In general, looking just at the first quadrant, for the curve y = x n y = x^{n} for integers n 2 n \ge 2 I have that the minimum ratio Δ O P Q \Delta OPQ has a base length 2 p 2p and sides each of length

p 1 + 1 n p*\sqrt{1 + \frac{1}{n}} ,

where P ( p , p n ) P(p,p^{n}) is such that

p 2 n 2 = 1 n p^{2n - 2} = \frac{1}{n} .

The minimum ratio is R = 2 n R = 2*\sqrt{n} .

The base angles θ \theta are such that

θ = sec 1 ( 1 + 1 n ) \theta = \sec^{-1}(\sqrt{1 + \frac{1}{n}}) .

For n = 4 n = 4 I get θ = sec 1 ( 5 2 ) \theta = \sec^{-1}(\frac{\sqrt{5}}{2}) , which is 26.565 26.565 degrees to 5 5 significant figures.

Is it intuitively obvious that the minimum ratio Δ O P Q \Delta OPQ would be isosceles?

Brian Charlesworth - 6 years, 8 months ago

Log in to reply

I'll check this again, but it looked like to me that it's an isosceles.

Michael Mendrin - 6 years, 8 months ago

Log in to reply

Yes, it's isosceles for sure, I just got a different value for the base angles, which made me wonder if I messed up somewhere.

Brian Charlesworth - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...