This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We use that ζ ( k ) = n = 1 ∑ ∞ n k 1 and thus rearrange the series given. We start by swapping summations:
k = 2 ∑ ∞ k ζ ( k ) − 1 = k = 2 ∑ ∞ n = 2 ∑ ∞ k n k 1 = n = 2 ∑ ∞ k = 2 ∑ ∞ k n k 1
We then invoke the expansion − ln ( 1 − x ) = k = 1 ∑ ∞ k x k .
n = 2 ∑ ∞ k = 2 ∑ ∞ k n k 1 = n = 2 ∑ ∞ − n 1 − ln ( 1 − n 1 )
Following that, we proceed to expose the implicit limit:
n = 2 ∑ ∞ − n 1 − ln ( 1 − n 1 ) = N → ∞ lim n = 2 ∑ N − n 1 − ln ( 1 − n 1 ) = N → ∞ lim 1 − H N − n = 2 ∑ N ln ( 1 − n 1 )
where H N = n = 1 ∑ N n 1 is the Nth harmonic number. The obtained sum, n = 2 ∑ N ln ( 1 − n 1 ) , is a telescoping series:
n = 2 ∑ N ln ( 1 − n 1 ) = ln [ n = 2 ∏ N ( 1 − n 1 ) ] = ln ( 2 1 3 2 … N N − 1 ) = ln ( N 1 ) = − ln N
Thus, our limit is
N → ∞ lim 1 − H N − n = 2 ∑ N ln ( 1 − n 1 ) = N → ∞ lim 1 − H N + ln N = 1 − γ
where γ is the Euler-Mascheroni constant, defined by γ = N → ∞ lim H N − ln N = 0 . 5 7 7 2 … . Hence,
k = 2 ∑ ∞ k ζ ( k ) − 1 = 1 − γ ≈ 0 . 4 2 3