A Recurrence type relation with an Integral.

Calculus Level 5


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 24, 2019

Note that λ m + 2 λ m = 0 π cos ( m x ) cos ( ( m + 2 ) x ) 1 cos x sin x d x = 2 0 π sin ( ( m + 1 ) x ) 1 cos x sin 2 x d x = 2 0 π sin ( ( m + 1 ) x ) ( 1 + cos x ) d x = 0 π ( 2 sin ( ( m + 1 ) x ) + sin ( ( m + 2 ) x ) + sin ( m x ) ) d x = [ 2 m + 1 cos ( ( m + 1 ) x ) 1 m + 2 cos ( ( m + 2 ) x ) 1 m cos m x ] 0 π = { 4 m + 2 m even 2 m + 2 + 2 m m odd \begin{aligned} \lambda_{m+2} - \lambda_m & = \; \int_0^\pi \frac{\cos(mx) - \cos((m+2)x)}{1-\cos x}\sin x\,dx \; = \; 2\int_0^\pi \frac{\sin((m+1)x)}{1-\cos x}\,\sin^2x\,dx \\ & = \; 2\int_0^\pi \sin((m+1)x)(1 + \cos x)\,dx \; = \; \int_0^\pi \big(2\sin((m+1)x) + \sin((m+2)x) + \sin(mx)\big)\,dx \\ & = \; \Big[-\tfrac{2}{m+1}\cos((m+1)x) - \tfrac{1}{m+2}\cos((m+2)x) - \tfrac{1}{m}\cos mx\Big]_0^\pi \\ & = \; \left\{ \begin{array}{lll} \tfrac{4}{m+2} & \hspace{1cm} & m \; \mbox{even} \\ \tfrac{2}{m+2} + \tfrac{2}{m} & & m\;\mbox{odd} \end{array}\right. \end{aligned} Similarly λ m + 2 λ m + 1 = 0 π cos ( ( m + 1 ) x ) cos ( ( m + 2 ) x ) 1 cos x sin x d x = 2 0 π sin ( ( m + 3 2 ) x ) sin 1 2 x 1 cos x sin x d x = 2 0 π sin ( ( m + 3 2 ) x ) cos 1 2 x d x = 0 π ( sin ( ( m + 1 ) x ) + sin ( ( m + 2 ) x ) ) d x = [ 1 m + 1 cos ( ( m + 1 ) x ) 1 m + 2 cos ( ( m + 2 ) x ) ] 0 π = { 2 m + 1 m even 2 m + 2 m odd \begin{aligned} \lambda_{m+2} - \lambda_{m+1} & = \; \int_0^\pi \frac{\cos((m+1)x) - \cos((m+2)x)}{1 - \cos x}\sin x\,dx \; = \; 2\int_0^\pi \frac{\sin((m+\frac32)x)\sin\frac12x}{1 - \cos x}\sin x\,dx \\ & = \; 2\int_0^\pi \sin((m+\tfrac32)x)\cos\tfrac12x\,dx \; = \; \int_0^\pi \big(\sin((m+1)x) + \sin((m+2)x)\big)\,dx \\ & = \; \Big[-\tfrac{1}{m+1}\cos((m+1)x) - \tfrac{1}{m+2}\cos((m+2)x)\Big]_0^\pi \\ & = \; \left\{ \begin{array}{lll} \tfrac{2}{m+1} & \hspace{1cm} & m \; \mbox{even} \\ \tfrac{2}{m+2} & & m\;\mbox{odd} \end{array}\right. \end{aligned} and it is now easy to see that ( m + 2 ) λ m + 2 2 λ m + 1 m λ m = m ( λ m + 2 λ m ) 2 ( λ m + 1 λ m ) = 4 (m+2)\lambda_{m+2} - 2\lambda_{m+1} - m\lambda_m \; = \; m(\lambda_{m+2} - \lambda_m) - 2(\lambda_{m+1} - \lambda_m) \; = \; \boxed{4} for all positive integers m m .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...